Divinylcyclopropane-Cycloheptadiene Rearrangement

Tomáš Hudlicky, Virginia Polytechnic Institute and State University, Blacksburg, Virginia Rulin Fan, Virginia Polytechnic Institute and State University, Blacksburg, Virginia Josephine W. Reed, Virginia Polytechnic Institute and State University, Blacksburg, Virginia Kumar G. Gadamasetti, Virginia Polytechnic Institute and State University, Blacksburg, Virginia

1. Introduction

The first documented report of a possible Cope rearrangement was probably that of Baeyer, who prepared eucarvone by hydrobromination of carvone in 1894. (1) Although the transformation was briefly studied at that time, it was not until the 1950s that this and other Cope-type rearrangements received detailed attention. The thermal isomerization of *cis*-divinylcyclopropane to cycloheptan-1,4-diene (Eq. 1) was reported by Vogel in 1960 during his studies of the Cope rearrangement of 1,5-hexadienes annulated by a homologous series of carbocyclic rings. (2, 3) Scores of mechanistic studies followed this discovery upon the realization that the rearrangement could be related to the conceptually similar vinylcyclopropane-cyclopentene isomerization discovered a year earlier. (4-6) It was also recognized that this rearrangement might be operating in the formation of cycloheptatriene from norcaradiene during photolysis of diazomethane in benzene, studied by von Doering in 1950 (Eq. 2). (7-9) The topic received considerable attention in the 1960s, an era of mechanistic investigations of various concerted transformations. During the 1970s it enjoyed exploitation in many synthetic strategies, and the following decade the elements of this rearrangement were incorporated into tandem or multistep procedures in a preconceived manner. Many aspects of the various permutations of the Cope rearrangement have been previously reviewed. (10-16)

The purpose of this review is to summarize the mechanistic, stereochemical, and practical results in this area in the context of the evolution of synthetic achievements during the last 40 years. Also described in this chapter are the transformations of several of the simple heteroatom permutations of this rearrangement in order to render appropriate comparisons of various systems. The following discussion therefore addresses those rearrangements of cyclopropanes, oxiranes, thiiranes, and aziridine rings substituted with vicinal vinyl groups. Excluded from this review are rearrangements of those divinyl-substituted three-membered rings that contain more than a single heteroatom within the reacting manifold. Brief mention of these systems along with a guide to the literature is found in the last section of this chapter.

The literature is covered through December 1990. Many of the principal researchers in this field have been contacted during the compilation of this review, and many unpublished transformations have been included in the tables.

2. Mechanism

Close inspection of the early literature suggests that the divinylcyclopropane rearrangement went unnoticed as such for some time. Aside from the ring expansion of norcaradiene mentioned above, (7-9) the base-catalyzed rearrangement of cyclopropyl enone 1 to cycloheptadienone 2 may very well have proceeded via the Cope rearrangement shown below, rather than by the direct unravelling of the cyclopropyl system from the γ position as originally proposed. (17-21) Curiously, the reverse of this reaction is observed during the oxidation of cycloheptadienone 3 with SeO₂. (22-25) Chloroazulene (5) was isolated from the base-catalyzed reaction of the dichlorocarbene adduct 4. (26) Finally,

the rearrangements of various bullvalenes, semibullvalenes, or isobullvalenes such as **6** or **7** also proceed through a degenerate Cope rearrangement. (27-31) Such rearrangements were observed during the studies of fluctional molecules, the simplest being 3,4-homotropilidiene (8). (27) The heteroatom analogs of

fluctional molecules have also been studied. (29-33) The earliest mechanistic observations recognized that *trans*-divinylcyclopropane cannot rearrange to cycloheptadiene in a concerted fashion because such a rearrangement would result in a *trans* olefin constrained in a seven-membered ring. The mechanism was studied in the early 1960s in the context of then-popular valence isomerism, and a number of reports appeared from the laboratories of Vogel (2, 3, 34-36) and von Doering (27, 37, 38) during this period. During an attempt to prepare *cis*-divinylcyclopropane, Vogel et al. noted that the Hofmann elimination of salt 9 gives cycloheptadiene 10 at 80°, presumably via the elusive

cyclopropane **11**. (3) The corresponding *trans* isomer **13** required a temperature of 180° to undergo similar rearrangement to **10**. An explanation was advanced by von Doering and Roth, who generated **10** even at -40° during the copper-catalyzed cyclopropanation of *cis*-hexatriene. (27) They postulated synchronous opening of *cis*-divinylcyclopropane (**11**) and a diradical opening of the *trans* isomer followed by either a diradical closure to **10** or isomerization to the *cis* compound and subsequent reorganization to

cycloheptadiene (**10**). (37, 38) An additional explanation of Vogel's experiment can be seen as postulated in path **a** in the base-catalyzed elimination of the first intermediate of the Hofmann process. (37, 38) Although possible, such a process seems more complex in terms of net electron movement than the generation of **11** by a simple E2 elimination (path **b**). von Doering has estimated the activation energy for this isomerization to be 20.6 kcal/mole. (37, 38)

cis-Divinylcyclopropane was prepared and characterized in 1973. (39) *cis*-1-Vinylcyclopropane-2-carboxaldehyde was converted to 11 by a low-temperature Wittig reaction; the product was distilled at low temperature

and then characterized by ¹H NMR at -20° . The rearrangement was complete below 35°, and the free energy of activation was 20 kcal/mole, in agreement with von Doering's postulate. (37) The rate of the rearrangement was 7.7×10^3 s⁻¹ at 35°.

trans-Divinylcyclopropane was examined in detail in 1972. (40) Optically active **13** was prepared by resolution of the precursory *trans*-2-vinylcyclopropane carboxylic acid in 14% optical purity. The rate of isomerization of (+)-**13** to (±)-**11**, k_2 , was 1.5 × 10⁴ s⁻¹ at 170°, the temperature of conversion of **13**

to cycloheptadiene (**10**). The corresponding rate of interconversion of enantiomers, k_1 , was $0.54 \times 10^4 \text{ s}^{-1}$ at 170° . These results were interpreted to mean that the observed racemization has no electrocyclic component and is therefore diradical in nature. Comparisons have been invoked between this racemization and the similar process for 1,2-diphenylcyclopropane and 1,2-divinyloxiranes. (41) *trans*-Divinylcyclopropane and its isomerization have been observed at a much lower temperature during the dehydrohalogenation of dichlorocyclopropane (**14**). (42, 43) The initially formed cycloheptadiene **10** gives, under the reaction conditions, its conjugated isomer.

The rearrangement of the three possible isomers of *trans*-divinylcyclopropane (16) was studied mechanistically. (44, 45) The results were interpreted as

electrocyclic closures exhibiting some zwitterionic character, as shown in **18**, and compared with the thermal isomerization of 1-alkylidene-2-alkylcyclobutanes. (46) Thus two opposing mechanistic interpretations of racemizations and rearrangements of dialkenylcyclopropanes were advanced: a concerted and a diradical picture.

The one-center epimerization interpretation versus a two-center question was readdressed in 1976. (47) *endo*-Cyclopropylcarboxaldehyde (19a), prepared by peroxyacid oxidation of norbornene, was resolved with ephedrine and converted to *endo*-vinylcyclopropane (20a). Epimerization of 19a with sodium methoxide gave the *exo* isomer 19b, which furnished the corresponding *exo*-vinylcyclopropane

20b. Through comparison of optical rotations it became evident that only the C(1) - C(6) bond suffered cleavage during the *trans-cis* isomerization, as no enantiomer of **21** was detected. Thus in this reaction, the absence of racemization excludes a two-center process (path B, Eq. 3). The *endo* isomer of racemic **20a** was isolated in 1965. (48) Similar studies are available on the deuterated analog of **20a**. (49)

As in the vinylcyclopropane–cyclopentene rearrangements, the major dispute over the mechanism involves diradical versus concerted pathways. (10-15) This dispute is, for the moment, unresolved. Discussion of this mechanistic

duality can be found in recent reviews of the Cope (10-16) and vinylcyclopropane-cyclopentene (11, 16, 50-54) rearrangements.

Among the *cis* and *trans* phenylvinylcyclopropanes, only the hydroxy-substituted compounds undergo the Cope rearrangement in the presence of base. (55) The thermal (56) and photochemical (57) rearrangements of several divinylcyclopropanes prepared by the addition of vinyldiazomethanes **22** to dienes **23** (56, 58) have been studied. (56-59) The *cis* isomers rearrange readily between –20° and 90°, whereas the *trans* compounds require temperatures above 160°.

The results of the experiments described above confirm an earlier observation that substitution on the vinyl moieties is an important factor with regard to rate. (44) *cis*-(Di-*cis*-propenyl)cyclopropane (27) does not rearrange at all and

undergoes only *cis–trans* isomerization. These results have been rationalized by invoking a concerted [σ^2 s + π^2 s + π^2 s] process and a boat-like, cisoid conformation in the transition state, (59) and are quite analogous to the known tendency of similarly functionalized vinylcyclopropanes. (10, 11, 16, 50, 52, 53) *cis*-Divinylcyclopropane rearranges 5800 times faster than *cis*-vinylpropenyl-cyclopropane. (59) The Cope rearrangement of divinylcyclopropanes is highly stereoselective in some cases. Thus cyclopropyl system **16** rearranges with retention of stereochemistry at the olefinic termini. (45) A boat-like transition state has been proposed to account for this and other observations. (59, 60)

A molecular orbital treatment of the *cis*-divinylcyclopropane system suggests that a minimum-energy transition state with an activation energy of 17–18 kcal/mole is available by considering structure **28**. (60) An experimental value of 22.3 kcal for the rearrangement of **29** has been reported (39) and is in good

agreement with the calculated value. (59, 60) Studies of the rearrangements of divinylcyclobutanes indicate that the Cope rearrangements indeed proceed through a concerted rearrangement in *cis* compounds and diradical isomerization of *trans* isomers to *cis* prior to rearrangement. (10, 12, 15, 59-61) This is in contrast to studies that suggest one-center epimerization pathways. (47)

Isolated examples of photochemical rearrangements exist and appear to involve diradical intermediates. (62, 63) In some cases a diradical intermediate may cyclize with an external π system, as in Eq. 4, where benzophenone inserts across the photochemically generated diradical of a sterically constrained divinylcyclopropane. (64, 65) A thermally induced insertion of this type has also been reported (66) and involves a [($^2\pi$ + $^2\sigma$ + $^2\pi$) + $^2\pi$] cycloaddition, presumed concerted (Eq. 5).

Rearrangements of divinylcyclopropanes catalyzed by transition metals are known and proceed in analogy to the reactive tendencies of simple vinylcyclopropanes (11, 16, 50, 52) or cyclopropanes. (67) Usually the rearrangement proceeds via initial ring opening to a metallocycle, which either undergoes further cycloadditions or results in an overall ring expansion (Eq. 6). (68, 69) In analogy with similar insertions into simple vinylcyclopropanes, (50, 67) the mechanism involves initial formation of an iron complex. A transition-metal-catalyzed Cope rearrangement has been reported. (70, 71) Initial complexation followed by generation of a bis- π -allyl system and electrocyclic closure to cycloheptadiene have been invoked (Eq. 7).

Recently, a Cope rearrangement has been reported under conditions that involve rhodium-catalyzed cyclopropanation of dienes with vinyl diazo compounds. (72) The cyclopropanations frequently generate *endo* divinylcyclopropanes, which produce cycloheptadienes under the reaction conditions. The participation of the metal in these rearrangements cannot be ruled out.

In summary, the mechanism and the stereochemical consequences of the Cope rearrangement of *cis*- or *trans*-divinylcyclopropanes may be generalized

to state that *cis* isomers rearrange by a low E_{act} pathway that is most likely a concerted one. The *trans* isomers suffer a diradical or one-center epimerization prior to the energy-releasing rearrangement to cycloheptadiene through a boat-like transition state. Stereoelectronic effects that operate in this rearrangement are governed by the usual rules of sigmatropic migrations or

diradical closures. (73, 74) Prediction of experimental results should be possible by considering the closest mechanistic analogy, the vinylcyclopropane system. (10, 11, 16, 50, 52, 53) Mechanistic investigations addressing the Cope rearrangement have been reviewed. (12-14, 75) Most recently, a detailed review summarizing

the mechanistic and synthetic aspects of the divinylcyclopropane rearrangement has been compiled. (15)

3. Scope and Limitations

3.1. Simple Cycloheptadienes

The first synthesis of a cycloheptadiene via a divinylcyclopropane rearrangement was undoubtedly the preparation of eucarvone (**3**) by Baeyer almost 100 years ago by treatment of carvone hydrobromide with base. Baeyer also proposed the possible intermediacy of the cyclopropyl ketone **30**. (1) This transformation was studied mechanistically by Wallach in 1905, (76, 77) Lapworth in 1910, (78) and van Tamelen in 1956 with the conclusion that a Cope rearrangement was indeed operating in this transformation. (19-21) The stability of simple cyclopropyl ketones to base investigated by Zelinskii in 1922 (79) also rendered unlikely the mechanism proposed by Wallach, (76, 77) who suggested

opening of the cyclopropane ring by the action of external nucleophiles (OH⁻). The reverse of this process occurs in the preparation of oxime **31** from eucarvone. (22, 24, 25) This procedure was applied to the synthesis of tropone (**2a**) and its derivatives. (19, 80)

Norcaradienecarboxylates rearrange at 150–170° to cycloheptatrienes **32**. (81) Tropolone (**33**) was prepared by irradiating a solution of diazomethane

in benzene at 365 nm, (7) followed by oxidation of the norcaradiene–cycloheptatriene equilibrium mixture. Addition of dichloroallyllithium to butadiene gives intermediate chlorodivinylcyclopropanes, which rearrange to chlorocycloheptadiene

at 25° (from *cis*) and 190° (from *trans*). (82) Cycloheptatrienes such as **34** are prepared by dehydrohalogenation of dichlorobicyclo[4.1.0]heptanes. (83) A low yield of tetrachlorodiene **37** is observed during base-catalyzed elimination of ditosylate **35**. (84) The initially formed 1,4-cycloheptadiene **36** isomerizes to **37** via an allylic shift.

More highly functionalized cycloheptanes are prepared by using the Cope rearrangement in such a way as to incorporate one of the olefins into an enol ether. When vinylcyclopropyl keto ester 38 is heated, a 48% yield of cycloheptenone 39 is realized. (85) This transformation can be improved by performing the rearrangement with trimethylsilyl enol ether 40 at a lower temperature. The addition of lithiovinylcyclopropanes or their cuprates to enones substituted with alkoxy or halo groups at the β position provides a convenient synthesis of divinylcyclopropanes such as 41. The metallation of bromovinylcyclopropanes as well as the addition is stereospecific. (86) The half-life of cis-41 is 30 minutes at 80°, whereas the half-life of trans-41 is 38 minutes at 160°. The isomeric cycloheptadienes 42a and 42b are produced in 72% yield. (86) Conversion of acid chlorides to divinylcyclopropanes 44 is accomplished with thiophenylvinylcyclopropane cuprate 43 followed by conversion of the ketones to their silvl enol ethers. Thermolysis provides high yields of cycloheptenones 45. (87, 88) Divinylcyclopropanes substituted on the vinyl moiety rearrange to cycloheptenes in a stereospecific fashion. The Z isomer 46a furnishes *cis*

diester **47a** while the *E* isomer gives only the *trans* diester **47b**. (89, 90) The stereospecificity has been rationalized by invoking a concerted rearrangement of the *cis*-divinylcyclopropane system through a boat transition state. (90) Addition

of vinylcyclopropyl cuprates to propargylic esters or ketones provides a convenient route to divinylcyclopropane precursors of cycloheptadienes such as **48** and **49**. (91)

Substituted cycloheptadienes are easily prepared by the Cope rearrangement. New and mild methods for this rearrangement continue to appear; for the latest applications the reader should consult Table I.

3.2. Annulation Procedures

The rearrangement of functionalized divinylcyclopropanes is used in several annulation protocols. Thus divinylcyclopropanes prepared by sulfoxonium ylide addition to Michael acceptors followed by Wittig reaction are thermolyzed to annulated cycloheptadienes such as **50**. The β , γ -olefin isomerizes to conjugation under the conditions of the rearrangement. (92, 93) α -Methylcyclopentenones of type **51** are similarly converted to divinylcyclopropanes which rearrange to angularly methylated bicyclo[5.3.0]decanes **53**. In analogy with the rearrangements of vinylcyclopropanes, (11, 16, 50) the *cis* isomer

of **52** does not undergo the rearrangement, presumably because of steric inhibition in the transition state. (94)

Divinylcyclopropanes such as **54** are generated by the addition of lithium vinylcyclopropanes to enol ethers of cyclic β -diketones. (86) The resulting divinylcyclopropanes produce the annulated cycloheptenes **55** at 80° or 160° for *cis* and *trans* isomers, respectively. When the cyclopropane is substituted with a methyl group, only the *trans* isomer **56a** rearranges to cycloheptene, (91)

whereas the *cis* compound gives the product of [1,5]-homodienyl shift in analogy with similar processes in *cis*-alkylvinylcyclopropanes. (11, 16, 50, 52, 73) Further substitution on the cyclopropane ring leads to rate retardation as seen for the rearrangement of the *cis* isomer **57** to bicyclo[5.4.0]undecanone **58**. (95)

The required boat transition state **59** cannot be attained because of hindrance by the *gem* dimethyl group. (95) Numerous examples of this protocol exist for

the construction of fused bicyclic systems. (86, 91-97) The spirocyclic annulation

based on this rearrangement has also been reported. (98) Generation of divinylcyclopropane 61 from iodo enone 60 leads to spirocyclic system 62 in 64%

yield. (98) The aforementioned conversion of acid chlorides to cycloheptenones can be adapted for spiroannulation, as shown for cycloheptanone **65**. (87) This protocol is sometimes complicated by the generation of regioisomeric enol ethers (87, 98) from unsymmetrical ketones such as **63**.

In general, the rearrangements of divinylcyclopropanes to annulated bicyclic systems proceed smoothly below 200° and are complicated only by the competing [1,5] shifts of *cis*-alkylvinylcyclopropanes or rate retardation due to increased olefin substitution in the divinylcyclopropane system, again in direct analogy to the criteria governing the vinylcyclopropane–cyclopentene rearrangement. (11, 16, 50, 52, 73, 74) A comparison of rate differences as a result of a substitution pattern has been made. (99) There may be a special ionic component in the transition state involving the rearrangement of 66c that is accelerated compared to either of the alkyl-substituted analogs 66a or 66b.

Bicyclo[5.3.0]decanes (86, 91, 94) and bicyclo[5.4.0]undecanes (86, 92, 93, 95) of varying substitution pattern are readily available. Bridged bicyclic systems are also accessible by modifying the topology of the rearrangement. Several approaches to bicyclo[3.2.1]octanes are described in the literature and differ only in the methods used to construct the precursory divinylcyclopropanes. The rearrangement of trimethylsilyl ethers such as 68, generated via the intramolecular cyclopropanation (51) of diazo keto esters 67 followed by silylation

of the intermediate keto vinylcyclopropanes, provides excellent yields of bridged systems **69** upon refluxing in xylene. (100) The regiomeric rearrangement of vinylcyclopropane **70** gives keto ester **71** in 73% yield. (100) The stereospecificity

of this rearrangement has been confirmed by comparison of the *cis* and *trans* isomers of divinylcyclopropanes **72a** and **72b**. Each rearranges smoothly to the *endo*- and *exo*- isopropylbicyclo[3.2.1]octane systems, respectively. (101) More highly functionalized systems are attained by the rearrangement of divinylcyclopropane **75**, in which the vinylcyclopropyl portion

is introduced via ethyl diazoacetate cyclopropanation of allylic ether **74**. The tricyclic system **76** is obtained in high yields by sealed-tube thermolysis of **75**. (101)

The rhodium-catalyzed cyclopropanation of some conjugated dienes with unsaturated diazo esters gives vinylcyclopropanes of type **78** exclusively in an

endo fashion, and the subsequent rearrangement to **79** is stereospecific. (72, 102-107) This process has been extended to include cyclopropanation of furans and pyrroles, leading to the corresponding bridged heterocycles. (106, 107) The intramolecular version of this reaction leads to the preparation of

fused cycloheptadienes such as **81** without isolation of the intermediate divinylcyclopropane.

The reaction is stereospecific in most cases and it is not clear whether rhodium catalysis is only the agent responsible for cyclopropanation or whether it also serves a function in the subsequent Cope rearrangement. (104) Carboethoxy or phenyl substitution on the unsaturated diazo ester unit seems essential.

The Cope rearrangement to trimethylsilyl enol ethers derived from 82a (in its *endo* form) occurs at low temperature. (108) This process represents an overall

[3 + 4] annulation of enones via vinylcyclopropanes **82a**, which can also be rearranged to annulated cyclopentenes such as **84a** in an overall [2 + 3]sequence. (108-112) The trimethylsilyl enol ether of *exo*-**82a** undergoes the Cope rearrangement only at temperatures above 180°, presumably via a diradical cleavage and isomerization to *endo*-**82a**. The consequence of this competition is the formation of cyclopentene **84a** along with **85a**. (108-110) Interestingly, **82c**, the enolate anion of **82a**, undergoes the Cope rearrangement at lower temperatures (–10° to room temperature). A remote charge acceleration has been invoked to explain this phenomenon. (110, 113) A study of this rearrangement and its application to the synthesis of bridged systems such as **87** has been made. (109)

A new vinylcyclopropane-cyclopentene rearrangement that proceeds under extremely mild conditions has been reported. (110, 111) Silyl enol ether terminated vinylcyclopropanes of type 82b (both exo and endo isomers) rearrange at -78° to the corresponding siloxycyclopentenes of type 84b upon treatment with trimethylsilyl iodide (TMSI) and hexamethyldisilazane (HMDS). (111) The stereochemistry of this process depends on the precise conditions of the rearrangement or the Lewis acid used. On the other hand, generation of the trimethylsilyl enol ether of 82b, via its enolate anion 82d, leads to almost quantitative production of 83b. (112) This control of the mode of rearrangement can also be applied to the six-membered analogs of 82b. Interestingly, 82d, the lithium enolate anion of 82b, also rearranges to 85b at low temperatures, even though the enolate of 82a requires higher temperatures, at which decomposition begins to compete with the rearrangement. (110-112) There are other reports of Cope rearrangements of divinylcyclopropanes in which one of the olefins is an enolate anion: the descarboethoxy derivative of 82a, which does not rearrange, (114) whereas a divinylcyclopropane in which one of the participating olefins is an ester enolate anion does rearrange at low temperature. (115) The mechanism of either the cyclopentene rearrangement or the Cope rearrangement of the silvl enol ether terminated vinylcyclopropanes remains unknown at this point, but preliminary evidence (low-temperature NMR monitoring of the reaction progress) suggests the existence of charged species as intermediates. (116) Remote charge acceleration from the silyl enol ether center or secondary orbital participation of the carboxylate heteroatoms is suspected. (112, 116)

Two procedures for the formation of cycloheptadienes via organometallic intermediates have recently appeared. The addition of vinyl cuprates to the ketals of cyclopropanes, followed by palladium-catalyzed coupling with vinyl halides, leads to intermediate divinylcyclopropanes **88**, which rearrange below room temperature to *cis*-functionalized cycloheptadienes **89**. (117) In the reaction

of chromium carbenoid **90** with conjugated dienes, divinylcyclopropanes **91a** and **91b** are formed in a ration of 1.7 to 1. The *cis* isomer rearranges to annulated cycloheptene **92** during the reaction (23% in the final mixture), whereas the *trans* isomer gives **92** quantitatively at 90°. (118)

The Cope rearrangement of divinylcyclopropanes leads to a number of interesting annulation protocols that furnish fused, bridged, or spiroannulated ring systems. Further refinements of this technology that will possibly eliminate the need for pyrolysis and thereby allow survival of sensitive

functional groups can be expected. Recent reviews incorporate the annulation protocols. (10-15)

3.3. Applications to Natural Product Synthesis

The Cope rearrangement of divinylcyclopropanes has been used in the synthesis of natural products containing functionalized seven-membered rings. Among the first applications following the eucarvone synthesis (1) was the Eschenmoser synthesis of colchicine (96), which features the norcaradiene Cope rearrangement of diester 94, generated by intramolecular displacement of chloride 93. (119) Curiously, cycloheptatriene 95b, undergoes equilibration with norcaradiene anhydride 95c. This type of equilibrium has been observed in a number of structurally similar compounds. (11-15, 22-25, 27) The Cope rearrangement has been applied to a formal total synthesis of colchicine (Eq. 8). (120) The key step in this synthesis is the generation of an appropriately functionalized *trans*-divinylcyclopropane via diazopyruvate cyclopropanation of butadiene followed by a Wittig reaction.

respectively, suggesting that the mechanism has radical character. This assumption rests on the partial racemization

observed in the products and the differences in the energies of activation, corresponding roughly to the resonance stabilization of the allylic radical expected in the rearrangement of **2**. (123) The enantiomers of **98a** and **98b** have also been isolated from the essential oil, (122) and dictyopterene C (**99**) has been proposed as their in vivo progenitor, as it seems unlikely that either dictyopterene A or B could serve as a biogenetic precursor. (123) The racemic

isomers of **99** have been prepared, and their rearrangement to the racemate of **98a** has been tested. (127-129) Thus, both *trans* and *cis* olefinic isomers of *trans*-substituted cyclopropane **99** give **98a** at 175°. The *cis*-olefinic isomer of *cis*-cyclopropane **99** requires 75° to rearrange, while the *trans* isomer of *cis*-**99** rearranges at 15°. (127) These results are in accord with the steric requirements of the Cope rearrangement. (10-16) Dictyopterene has been synthesized from vinylcyclopropane carboxaldehyde (**100**), (127) and by cyclopropanation of butadiene with ethyl diazoacetate and subsequent elaboration of vinylcyclopropane **101**. (130) The thermal and photochemical

behavior of all four stereoisomers of dictyopterene *A* and the related dictyopterene *B* has been studied. (126, 127) Accurate kinetic data and comparison of E_{act} and $\triangle S^{\dagger}$ values for dictyopterenes with those of various model systems leads to the conclusion that the rearrangement may be concerted ($E_{act} \sim 32$ kcal/mole for various isomers of **97a** and **99**, 28 kcal/mol for **97b**). Isomerization (*trans–cis*) was rationalized in terms of diradical intermediates. Photochemical isomerization of the *cis,trans* isomers of **97a** to **99** proceeds at 40° in benzene and produces mixtures of **99** and **98a**. Diradical intermediates and their recombination to various stereoisomers of **97a** or to cycloheptadiene **98a** have been invoked in explanation. (126, 127)

A synthesis of cycloheptadiene **98b**, the racemate of the sperm-attractant sirenin isolated from the female gametes of the brown alga *Ectocarpus siliculosus*, starts from **100**. (131) No correlation of optical rotation was made to compare this substance to dictyopterenes C or D. (123, 125, 129) Synthesis of these naturally occurring cycloheptadienes has also been accomplished in a chiral sense. (132, 133)

Arachidonic acid analogs **102a** and **102b** have been prepared via the Cope rearrangement of divinylcyclopropanes **103**. (134) A naturally occurring divinylcyclopropane

antibiotic **104** from *Polyangium cellulosum* var. Fulrum is thermolyzed to cycloheptadiene **105**, which is inactive against pathogenic fungi. (135) β -Himachalene (**108**) has been synthesized via a Cope rearrangement of divinylcyclopropane **106** generated by conjugate addition of an appropriate cuprate. The thermolysis of **106** gives annulated cycloheptadiene **107**, which is

converted to β -himachalene. (136) Damsinic acid (111) and confertin (112) have been prepared by manipulation of a common intermediate, fused cycloheptadiene 110. (63) Noteworthy in this synthesis is the solution to the problem of competing rearrangements such as the [1,5]-homodienyl shift of *cis*-alkyldivinylcyclopropanes 109b. Whereas the thermolysis of 109a leads to 110 in 100% yield, 109b furnishes this compound in only 20% yield at the expense of the retro ene process. Irradiation of 109b at 98° leads to cycloheptadiene

110 in 80–90% yield, presumably by generating the *cis*-divinylcyclopropane which then undergoes thermolysis. (63)

A model study aimed at the synthesis of phorbol (120) led to the preparation

of tricyclic ketone **114** via the Cope rearrangement of divinylcyclopropane **113**, which takes place under acidic (solvolytic) conditions, perhaps

accelerated by a partial remote charge. (99) A more recent study toward phorbol-type compounds features the base-catalyzed formation of one of the vinyl units in divinylcyclopropane 117. The E and Z stereochemistry determines

the stereochemistry of cycloheptadiene **118** or its hydrolysis product, bicyclic ketone **119**. The *E* enolate in **117** is preferentially formed from the precursory β -keto ester by refluxing it in benzene–triethylamine, where an internally hydrogen bonded enol form would predominate. The bicyclic ketone **119** possesses the C-4, C-8 stereochemistry found in phorbol (**120**). (137)

A formal synthesis of quadrone (125) has been accomplished via the rearrangement of trimethylsilyl enol ether 122, available in 13 steps. The Cope rearrangement takes place at 170° to generate bridged tricyclic 123, which is converted to keto aldehyde 124 in 11 steps. (138) The structurally similar system

126 has also been synthesized via a [3 + 4] annulation sequence. (108, 109) The

synthesis of sinularene (129) was accomplished by the sequence shown in Eq. 9. The Cope rearrangement of 127 proceeds in 86% yield to furnish the precursor to the natural product, bicyclic enol ether 128. (139) Prezizanol (130)

and prezizaene (131) are obtained by a similar strategy. Only the *endo* isomer 132 rearranges to bicyclo[3.2.1]octane 133 in 98% yield. This compound was converted to the sesquiterpenes 130 and 131 in 11 steps. (140)

It can be expected that this rearrangement will continue to be used in the total syntheses of complex natural products because of its simplicity, low energy of rearrangement, and high degree of stereocontrol. The development of tandem processes of increasing complexity that generate the divinylcyclopropanes under mild conditions will aid in further applications of this rearrangement.

4. Heterocyclic Systems

The Cope rearrangement of divinylcyclopropanes in which one or more atoms along the periphery of the reacting system has been replaced by a heteroatom is also known. (10-16, 27, 51, 52) In such systems the mechanism can operate from additional manifolds: electrocyclic zwitterionic processes, fully ionic processes involving nucleophilic ring opening followed by alkylative reclosure, and diradical cyclizations. The regiochemistry as well as the topology of heteroatom variations of the Cope rearrangement, like those of the heteroatom analogs of the vinylcyclopropane system, are therefore more complex than for the carbocyclic system. (51, 52)

4.1. Divinyloxiranes

The rearrangement of divinyloxiranes to oxepines has been investigated in detail. 4,5-Dihydrooxepine (135) was isolated during an attempted preparation of divinylethylene oxide by pyrolysis of divinylethylene carbonate. (141) The intermediate in this reaction is oxirane 134; thermolysis of its *cis* and

trans isomers resembles that of the carbocyclic analogs. (142) The *cis*- and *trans*-divinyloxiranes have D H[‡] of 24.6 kcal/mole and 36 kcal/mole, and D S[‡] of -11.3 cal deg⁻¹ mole⁻¹ and -0.4 cal deg⁻¹ mole⁻¹, respectively. This suggests that a boat transition state and a diradical cleavage of the C ! C bond operate in the oxepine rearrangement. (143) Benzene oxide–oxepine valence tautomerism has been compared to the norcaradiene–cycloheptatriene rearrangement. (143) The kinetics of the equilibrium of **136** and **137** as well as substituted derivatives of these systems have been reviewed. (143, 144)

trans-Divinyloxiranes yield vinyldihydrofurans in competing rearrangements. The kinetics of racemization of chiral *trans*-divinyloxirane ($k_{160^\circ} = 5.5 \times 10^6 \text{ s}^{-1}$), suggest an electrocyclic process for the ring opening. (145) An isotope effect study suggests that oxepines or vinyldihydrofurans are produced competitively from a common zwitterionic intermediate. (146) A carbonyl ylide mechanism has been proposed to account for these observations. (147) Disrotatory closure of 141 would lead to dihydrofuran 140 (with inversion). Conrotatory

closure would yield the *cis* oxirane, which undergoes closure to oxepine **139** stereospecifically. (141, 148, 149) A summary of mechanistic options is shown in Eq. 10.

Eberbach (149-158) and Chuche (148, 159-165) studied the mechanism and

applications of this rearrangement extensively. An interesting comparison can be made between the systems studied by Eberbach, which involved mainly dienyl or enynyl epoxides, and those of Chuche, who investigated the divinyl or vinylynyl oxiranes. In both instances oxepines of the appropriate unsaturation level are obtained, with competing rearrangements to vinyldihydrofurans or in some cases to cyclopropyl carbonyl compounds. The concerted closures of zwitterions such as 141, 143, 145, and 147 were invoked as mechanistic options

in both thermal and photochemical rearrangements of oxiranes of type **138**, **142**, **144**, and **146**, respectively. (148) Only Z isomers of **142** lead to oxepins, whereas either Z or E isomers lead to vinyldihydrofurans. (157, 158)

The alkynyl compounds **144** rearrange at 170° to either vinylfurans or oxepins. (150-152) The intermediate in these reactions is the cyclic allene **148**,

which isomerizes to an oxepine under thermolytic conditions. (153) A similar intermediate, 148a, has been proposed (159) to account for the formation of

oxepine from **146** and the formation of ethynylcyclopropylaldehyde **149**. (159, 160) This transformation has been studied in gaseous and liquid phases and found somewhat controllable. (161)

This rearrangement is sometimes useful in the synthesis of fused oxepines or benzoxepines. Under certain conditions aromatic olefins participate in the rearrangement. (166-168) However, the rearrangement of oxiranes such as

150a,b (148) is sluggish, as is the rearrangement of the 2-furyl derivative **152a**. (166) On the other hand, 3-furyl derivative **152b** provides smoothly the intermediate oxepine **154a**, which gives the fully aromatic compound **156** under the reaction conditions. (166) This difference in reactivity can be attributed to unfavorable resonance stabilization of carbonyl ylides of type **141** derived from the 2-furyl compounds, which yield dihydrofurans rather than oxepins upon thermolysis. (148, 166) Control in the rearrangement of compounds such as **152b** to either oxepines **156** or dihydrofurans **155** depends on the temperature profile of the

pyrolysis. (166-168) Apart from the detailed mechanistic studies, few examples of this rearrangement in the synthesis of more complex molecules have been reported. Senepoxin has been synthesized by allylic bromination of epoxide **157**, available in 14 steps from methyl 3,5-hexadienoate, followed by in situ generation of the divinyloxirane precursor, which gave senepoxin in 22% yield, Eq. 11. (169) Control of the dihydrofuran–oxepine mode of the rearrangement allows the conversion of oxirane **152b** to ipomeamarone, a furanosesquiterpene from the sweet potato *Ipomea batatas* (Eq. 12). (167)

ipomeamarone

One example of a biological divinyloxirane–oxepine rearrangement has been reported in the context of stereochemical studies in sesquiterpenoids. A minor constituent of the extract of *Mikania* species, miscandenin (158a), has been assigned the indicated stereochemistry by X-ray crystallography, in analogy with a similar assignment to occidenol (159). The suggested Cope rearrangement responsible for the formation of these compounds is shown. (170)

An example of this rearrangement that proceeds under extremely mild conditions involves the synthesis of oxepine **154b** from the silyl enol ether-terminated vinyloxirane **152c**. Either oxepines **154b** or dihydrofurans **160** are available by controlled thermal rearrangement of the oxirane. The dihydrofurans such as **160** become exclusive products of the low temperature

rearrangement of **152c** mediated by trimethylsilyl iodide–hexamethyldisilazane, (168) in direct analogy to the rearrangement of the silyl enolether-terminated vinylcyclopropanes. (111) The mechanism of this intriguing rearrangement is at present unknown. (116, 168)

4.2. Divinylaziridines

Transformations analogous to the Cope rearrangement occur with both divinylaziridines and vinylaryl- or vinylalkynylaziridines. These processes have been studied in parallel with the corresponding oxygenated analogs. (159, 160, 165) The rearrangement of *cis*- and *trans*-divinylaziridines **161a**,**b** to azepines **162** occurs during the ring opening of divinyloxiranes with ethylamine. (171)

In the presence of moisture, the ring-contracted cyclopentene imine **163** is observed. The rate of the valence isomerization of *cis*-divinylaziridine **164** to its azepine is $k_{25^\circ} = 1.28 \times 10^{-4} \text{ s}^{-1}$. (172) It is noteworthy that several

regioisomeric divinylaziridines can exist as a consequence of the trivalent nitrogen. Thus the substitution pattern in the resulting azepines can also differ.

The D H^{\ddagger} for the isomerization of **165** is 18.5 kcal/mole, a value substantially lower than that for carbon analogs in the Cope rearrangement. (173) *cis*-Divinylaziridines give azepines whereas *trans* compounds furnish pyrrolines, in analogy with the rearrangements of divinyloxiranes. Concerted closures of zwitterionic intermediates have been postulated as mechanistic explanations for thermal rearrangements. (174) Aziridines **166**, in which only one of the vinyl

groups is confined in an aromatic nucleus, prefer the pyrroline pathway, (174) but *N*-substituted vinylaziridines **169** give pyridoazepines **170** on thermolysis. (175)

Cycloadditions of vinylaziridines to acetylenes have been reported to involve intermediates similar to the ylides obtained on thermolysis of divinylaziridines. (176-178)

The vinylalkynylaziridines **171** behave like their divinyloxirane analogs. (159-161) The chief product is azepine **172**; however, ring contraction and transformation to cyclopropylalkynylimines **173** has also been observed. Allene **174** has been postulated as an intermediate. (159)

4.3. Divinylthiiranes

cis-Divinylthiirane **175** isomerizes to 4,5-dihydrothiepine at 340° (flow system). (179) Kinetic measurements (**176** in CCl₄ solution, 110°) show that the rearrangement is slower than that of oxiranes, cyclopropanes, or aziridines (Table A) (179) with $k_1 = 14 \times 10^{-3} \text{ min}^{-1}$ at 118°. The rearrangement has been suggested to proceed through an ylide intermediate. The competing formation of vinyldihydrothiophene **178** (29%) is also observed. (179)

x	ΔH [‡] (kcal/mole)
CH ₂	17.8
NR	18.5
0	22.7
S	25.0

Table A
Table A

CH ₂ 17.8 NR 18.5 O 22.7
NR 18.5 O 22.7
O 22.7
S 25.0

The *cis*- and *trans*-divinylthiiranes are stable at room temperature. The *cis* isomer rearranges above 90° and the *trans* isomer at 120°. (180) Loss of sulfur and formation of hexatrienes as well as isomerizations of thiepines are the major complications. (179, 180) Diradical intermediates have been invoked to

explain the competing process. The *cis*- or *trans*-divinylthiiranes can rearrange according to the postulate shown in Eq. 13. (180) No use in synthetic methodology has been reported.

4.4. Miscellaneous Compounds

Essentially any combination of heteroatoms, both within and outside the three-membered ring, is subject to the Cope rearrangement. Acyl azide **179** gives an unusual rearrangement product on attempted Schmidt reaction. (181)

The product was identified as imino ketone **181**, arising via Cope rearrangement of isocyanate **180**.

Rearrangement of vinylcyclopropyl isocyanates have been reported to give azepinones (Eq. 14) (182) or lactams (Eq. 15). (34, 35) Azepinamides are also obtained from vinylcyclopropyl imidates, (Eq. 16). (32) Similarly, vinylcyclopropyl carbonyl

compounds **183** can yield oxepines **184** or vinyldihydrofurans **182** through thermal equilibration involving diradicals such as **186**. (183)

A study of substituent effects on the outcome of the rearrangement of most of the analogs of the Cope rearrangement discussed in this chapter has appeared. (184) Further examples of the Cope-like transformations of three-membered ring systems substituted with a variety of unsaturated side chains containing heteroatoms can be found in a recent compilation on the transformation of ring heterocycles. (185, 186) This review summarizes only the most common types of the rearrangement, excluding those three-membered rings that contain more than a single heteroatom.

5. Summary

The potential of the seven-atom assembly represented by a Cope system appears limitless. Ample mechanistic precedent has been set, and it appears that synthetic utility should be forthcoming, especially in the heteroatomic cases. It appears that a system such as **187** (where A-G can represent any combination of atoms or functionalities that satisfy their valence requirements)

can effectively yield the product of its Cope rearrangement, **188**, where the final topography is dictated by the relative energetics of the particular bonds that participate in the rearrangement. Finally, applications of the Cope rearrangement to enantiocontrolled synthesis will no doubt appear as methods are developed that both lower the temperature of the rearrangement and provide means of chirality transfer or retention during the rearrangement.

6. Experimental Procedures

6.1.1.1. cis-6,7-Dimethylcyclohepta-1,4-diene (44)

A 40-µL sample of *trans,trans,trans*-dipropenylcyclopropane (98.6%) was degassed through three or four freeze-pump-thaw cycles at 10^{-4} torr, then sealed under vacuum in a base-washed and thoroughly dried ampule, and heated in an oil bath at 178° for 4.2 hours. The reaction mixture contained one product (98.8%) and no starting material according to GPLC analyses. The ¹H NMR spectrum (δ 5.58, 3.07, 2.61, 2.55, 0.99) was identical with that of an authentic sample of *cis*-dimethylcyclohepta-1,4-diene.

6.1.1.2. 7-n-Butyl-1-tert-butyldimethylsiloxy-1,4-cycloheptadiene (87) To a cold (-78°) stirred solution of lithium diisopropylamide (1.4–1.5 mmol/mmol of ketone) in dry THF (4 mL/mmol of base) under an atmosphere of argon was added slowly a solution of n-butyl-trans-2-vinylcyclopropyl ketone (1.19 mmol) in dry THF (1 mL/mmol of ketone), and the resulting solution was stirred at -78° for 45 minutes. A solution of freshly sublimed tert-butyldimethylsilyl chloride (1.6 mmol/mmol of ketone) in dry THF (1 mL/mmol of chloride) was added, followed by dry HMPA (0.5 mL/mmol of ketone). The solution was stirred at -78° for 15 minutes and at room temperature for 2–3 hours, and then it was partitioned between saturated aqueous sodium bicarbonate and pentane (10 mL and 20 mL/mmol of ketone, respectively). The aqueous phase was washed twice with pentane. The combined extract was washed four times with saturated aqueous sodium bicarbonate and twice with brine, and then dried ($MgSO_4$). Removal of the solvent, followed by bulb-to-bulb distillation of the remaining oil, gave the corresponding silvl enol ether as a colorless oil that exhibited no IR carbonyl stretching absorption. Thermolysis of the silvl enol ether was accomplished by heating (neat, argon atmosphere) at 230° (air-bath temperature) for 30-60 minutes. Direct distillation (140–150°/12 torr) of the resultant materials provided the cycloheptadiene in 85% yield: IR (film) 1660, 1260, 840 cm⁻¹; ¹H NMR (CDCl₃) δ 0.09 (s, 6H), 0.88 (s, 9H), 0.7–2.75 (m, 14H), 4.8 (t, 1H, J = 5.5 Hz), 5.5–5.9 (m, 2H).

6.1.1.3. 1,2,3,7-Tetrachloro-1,3-cycloheptadiene (84)

To a solution of *cis*-1,2,3,3-tetrachloro-1,2-cyclopropane diethyl bis(*p*-toluenesulfonate) (1.15 g, 2 mmol) in THF (80 mL) was added dropwise at -50° under a nitrogen atmosphere *t*-BuOK (960 mg, 8.5 mmol) in THF (15 mL). After 1 hour at -50° , the solution was allowed to warm to room temperature over 2 hours. It was evaporated in vacuo at 25°. The residue was extracted with chloroform and ether. The solvent was evaporated and the crude product purified by column chromatography (SiO₂/ CHCl₃) followed by preparative TLC (SiO₂/ CHCl₃) yielding

1,2,3,7-tetrachloro-1,3-cycloheptadiene (10%): UV (CDCl₃) 257 cm⁻¹; IR (film)

3040, 2940, 2850, 1590, 1570, 1440, 1340, 1315, 1180, 1140, 1120, 840, 750, 710 cm⁻¹; ¹H NMR (CDCl₃) δ 2.3 (m, 2H), 2.6 (m, 2H), 4.92 (dd, 1H, *J* = 6, 8 Hz), 6.56 (t, 1H, *J* = 7.1 Hz); ¹³C NMR (CDCl₃) δ 24.7 (t), 43.8 (t), 59.1 (d), 127.6 (s), 128.5 (s), 134.1 (d), 136.3 (s).

6.1.1.4. 12,12-Diphenyl-5-methyl-11-oxa-7-oxo-tetracyclo[6.4.0.0^{5,9}.0^{6,9}]dodec -3-ene (65)

A solution of benzophenone (91 mg, 0.5 mmol) and

5,8-dimethyl-9-methylenetricyclo[$3.3.1.0^{2,8}$]non-3-en-7-one (87 mg, 0.5 mmol) in benzene (5 mL) was irradiated (RPR-100 photoreactor, 350-nm lamps) at room temperature for 8 hours. After the solvent was removed in vacuo, the resulting residue was separated by TLC on silica gel using ether–hexane (1:1) as the eluant to give the starting material (10 mg, 10%) and the cycloadduct (95 mg, 69%). The product was recrystallized from ethanol to give colorless crystals (mp 182–183°): IR (KBr) 1705, 1595, 1035 cm⁻¹; ¹H NMR (CDCl₃) δ 0.95 (s, 3H), 1.47 (s, 3H), 1.86 (d, 1H, J = 18.8 Hz), 2.34 d, 1H, J = 18.8 Hz), 2.45 (s, 1H), 3.43 (d, 1H, J = 6.8 Hz), 4.06 (d, 1H, J = 11 Hz), 4.62 (d, 1H, J = 11 Hz), 5.5 (dd, 1H, J = 8, 6.8 Hz), 5.79 (d, 1H, J = 8 Hz), 7.05–7.77 (m, 10H); MS [m/e (rel.int)] 356 (M⁺), 132 (100).

6α)-(±)-3,3a,6,7-Tetrahydro-6-methyl-7-phenyl-1H-cyclohepta[c]furan-1-one (105)

A solution of (2E, 4E)-2,4-hexadienyl 2-diazo-4-phenyl-3-butanoate (5 mmol) in dichloromethane (10 mL) was added dropwise over 10 minutes to a stirred mixture of rhodium(II) acetate (0.021 g, 0.05 mmol) in dry dichloromethane (10 mL) and heated under reflux in an argon atmosphere. After heating for an additional 10 minutes, the solvent was evaporated under reduced pressure, and the residue was purified by column chromatography on silica with ethyl acetate–hexane (1:9) as solvent to give (3a α , 6 α , 7

α)-(±)-3,3a,6,7-tetrahydro-6-methyl-7-phenyl-1*H*-cyclohepta[*c*]furan-1-one as a white solid (mp 104–106°) in 76% yield: IR (Nujol) 1755, 1670 cm⁻¹; ¹H NMR (CDCl₃) δ 1.0 (d, 3H, J = 6.7 Hz), 3.16 (m, 1H), 3.69 (m, 1H), 4.09 (dd, 1H, J = 8.7, 8.7 Hz), 4.21 (m, 1H), 4.66 (dd, 1H, J = 8.7, 8.7 Hz), 5.36 (ddd, 1H, J = 10, 6.4, 3.0 Hz), 5.68 (ddd, 1H, J = 10, 2.1, 2.1 Hz), 6.92 (dd, 1H, J = 5.3, 3.2 Hz), 7.13–7.75 (m, 5H); Anal. Calcd for C₁₆H₁₆O₂: C, 79.97; H, 6.71. Found C, 79.99; H, 6.75.

6.1.1.6. Diethyl

endo-1,5-Dimethyl-8-oxabicyclo[3.2.1]octa-2,6-diene-2,4-dicarboxylate (103) A solution of diethyl 4-diazo-2-pentenedioate (1.06 g, 5 mmol) in dichloromethane (10 mL) was added dropwise over 10 minutes to a stirred mixture of rhodium(II) acetate (0.021 g, 0.05 mmol) and 2,5-dimethylfuran (25 mmol) in dichloromethane (5 mL) and heated under reflux in an argon atmosphere. After heating for an additional 10 minutes, the solvent was evaporated under reduced pressure and the residue was purified by chromatography on silica with ether-petroleum ether (15:85 to 20:80) as gradient to give diethyl

endo-1,5-dimethyl-8-oxabicyclo[3.2.1]octa-2,6-diene-2,4-dicarboxylate (0.98 g, 70%): IR (neat) 1720, 1705, 1622 cm⁻¹; ¹H NMR (CDCl₃) δ 1.27 (t, 3H, J = 7.1 Hz), 1.30 (t, 3H, J = 7.1 Hz), 1.60 (s, 3H), 1.67 (s, 3H), 3.48 (d, 1H, J = 2.7 Hz), 4.13–4.23 (m, 4H), 5.72 (d, 1H, J = 5.7 Hz), 6.47 (d, 1H, J = 5.7 Hz), 6.53 (d, 1H, J = 2.7 Hz); ¹³C NMR (CDCl₃) δ 13.9, 19.7, 23.9, 49.4, 60.3, 60.8, 83.8, 84.9, 131.2, 133.9, 140.7, 143.3, 165.4, 168.7; Anal. Calcd for C₁₅H₂₀O₅: C, 64.27; H, 7.19. Found: C, 64.41; H, 7.20.

6.1.1.7. 2,3-Dicarbomethoxy-6-phenyl-4,7-dihydro-1H-azepine (176) To a solution of 2-phenyl-2-vinylaziridine (0.44 g, 3 mmol) in methylene chloride (10 mL) was added dimethyl acetylenedicarboxylate (0.4 g) at 0°. Removal of the solvent led to

2,3-dicarbomethoxy-6-phenyl-4,7-dihydro-1*H*-azepine (95%, mp 122–123°): IR (neat) 3300, 1730 cm⁻¹; ¹H NMR (CDCl₃) δ 3.46 (d, 2H, *J* = 7 Hz), 3.72 (s, 3H), 3.85 (s, 3H), 4.4 (d, 2H), 4.75 (broad s, 1H), (D₂O exchange: signal at 4.75 disappeared and signal at 4.44 collapsed to a singlet), 6.36 (t, 1H, *J* = 7 Hz), 7.4 (s, 5H).

6.1.1.8. 3,6-Dihydro-3,3,6,6-tetramethyl-2H-azepin-2-one (182)

A solution of *cis*-2,2-dimethyl-3-isobutenylcyclopropyl isocyanate (3.5 g, 21.2 mmol) in dry *o*-xylene (30 mL) was refluxed under a dry nitrogen atmosphere for 60 hours. After evaporation of *o*-xylene, the residue was distilled under a nitrogen stream to give

3,6-dihydro-3,3,6,6-tetramethyl-2*H*-azepin-2-one (2.1 g, 60%) as colorless oil (bp 79°/2 torr).

6.1.1.9. Eucarvone (24)

Freshly distilled carvone (200 g, 1.33 moles) was added to a solution of hydrogen bromide (296 g, 3.66 moles) in glacial acetic acid at 6-11°. The rate of addition was determined by the effectiveness of the cooling and stirring; with a good paddle-type stirrer and a cooling bath at -30° , 15-30 minutes was required. The cooling bath was removed and stirring continued for 15 minutes. The resulting dark solution was poured into 2 L of water, the lower layer was separated, and the aqueous layer was extracted with ether. The combined organic layers were washed with water, then with saturated potassium bicarbonate solution until basic to litmus, and finally with water until neutral. The ether solution was dried roughly over sodium sulfate, then dropped into a well-stirred and cooled solution of 145 g of potassium hydroxide in 550 mL of methanol. After completion of the addition, the resulting stirred suspension was refluxed for 15 minutes and poured onto ice-sulfuric acid to precipitate the eucarvone. The yellow oil was separated and the aqueous layer was extracted with ether. The ether solution was washed with saturated potassium bicarbonate solution and transferred to a steamdistillation apparatus along with

20 g of barium bicarbonate. After the ether had distilled, 9 L of distillate was collected, saturated with salt, and extracted with ether. The combined extracts were dried over sodium sulfate, concentrated in vacuo to a yellow oil, and fractionated in a spinning band column of approximately 25 plates to yield a

total of 146.5 g (73%) of eucarvone (bp 82.5–84°/8 torr; $n_D^{(21)} = 1.5080$).

7. Tabular Survey

The tables are organized according to the type of rearrangement and its product. In many cases the requisite divinylcyclopropane or its analog is generated from suitable precursors under the conditions of the rearrangement. The starting material is shown along with the intermediate in brackets, and the system is listed according to the carbon number of the reactive intermediate. Table I lists only thermal rearrangements of divinylcyclopropanes leading to simple cycloheptadienes, whereas the rearrangements resulting in the formation of products that contain more than one ring are found in Table II. Photochemical rearrangements are listed in Table III, and those occurring under transition-metal catalysis are found in Table IV. In some cases the rearrangement takes place in a reaction medium containing transition metals, but these may not be directly involved in the mechanism of product formation. For clarity such rearrangements are also listed in Table IV. Tables V–VII contain compilations of Cope-type rearrangements of divinyloxiranes, divinylaziridines, and divinylthiiranes, respectively. Finally, Table VIII lists a few examples of Cope-type rearrangements of systems containing other heteroatoms in the reacting matrix.

In those cases where multiple references exist for a given compound, only those that deal with the actual preparation are given. References to rate studies or additional references to preparation are found in the text. The following abbreviations are used in the tables:

Bn	benzyl
Bz	benzoyl
DMF	dimethylformamide
DMSO	dimethyl sulfoxide
HMDS	hexamethyldisilazane
HMPA	hexamethylphosphoric triamide
LDA	lithium diisopropylamide
NBS	N-bromosuccinimide
rt	room temperature
TBS	tert-butyldimethylsilyl
TFA	trifluoroacetyl
THF	tetrahydrofuran
THP	tetrahydropyranyl
TMS	trimethylsilyl
Ts	<i>p</i> -toluenesulfonyl

(-) no yield given

Table I. Thermal Rearrangements of Divinylcyclopropanes toCycloheptadienes

View PDF

 Table II. Thermal Rearrangements of Divinylcyclopropanes to Annulated

 Systems

View PDF

Table III. Photochemical Rearrangements of Divinylcyclopropanes

View PDF

Table IV. Transition-Metal-Catalyzed Rearrangements ofDivinylcyclopropanes

View PDF

 Table V. Rearrangements of Divinyloxiranes

View PDF

Table VI. Rearrangements of Divinylaziridines

View PDF

Table VII. Rearrangements of Divinylthiiranes

View PDF

Table VIII. Rearrangements of Miscellaneous Systems

View PDF

-	Reactant(s)	Conditions	Product(s) and Yield(s) (%)	Refs.
С,	H H			
-			_ + _ +	
	N=N			1.11
c	is + trans	Heat	(53) (47)	58
C.	ans.	Heat	(38) (62)	57
c	is + trans	45°	(38,1) (61,5)	187
c	is + trans	75°	(36.6) (63.0)	187
c	is + trans	100°	(32.4) (67.0)	187
		-20 to 20° in NMR probe	•	39, 40, 59
=	=_/=	-40°		27, 34
		80°	(-)	3
c		- 10°	\bigcirc	188
	A (=	160° in NMR probe		39, 40, 59
	Δ	190°	C y	27 34
	=/	170–180°	0	3
6	\wedge			
Į.			e y	2, 3, 7
	Ĩ		(-)	
	ay	160–190°	() (90)	82
ı		<i>t</i> -BuOK, DMSO, 25°, 2.3 h		42, 43
		Pentane, 100°, 44 h	$\begin{array}{c} \text{III} \\ \text{(52)} \text{I:II:III} = 7:1:3 \\ \text{(52)} \text{I:II:III} = 4.1:5 \end{array}$	
-		<i>t</i> -BuOK, THF, -50°, 1 h; -50° to rt, 2 h	(33) 1:11:11 = 4:1:3	84
ú		Thermolysis or base		189

TABLE I. THERMAL REARRANGEMENTS OF DIVINYLCYCLOPROPANES TO CYCLOHEPTADIENES

\$

Reactant(s)	Conditions	Product(s) and Yield(s) (%)	Refs.
	160° in NMR probe	cis-trans isomerization, no Cope product	59
trans (Z,E)	178°, 4.2 h, sealed tube		44, 45
	Me	(95)	
	– 78°		91
CO ₂ Me		(80) MeO_2C' (15)	
CO2Et	150–170°	CO ₂ Et	81
OH CO2Me			85
	C ₆ H ₆ , 240°, 20 h	CO ₂ Me (48)	
	 TMSCI, Et₃N, Et₂O, rt C₄H₆, 210°, 16 h KF, MeOH, rt 	(88)	85
$ \begin{bmatrix} \mathbf{y}^{0} \cdot \mathbf{u} \\ \mathbf{y}^{0} \\$	1. −78°, THF, H ₃ O+ 2. heat	<u>الم</u>	86
	NaOH, MeOH, 0°		1, 17–19, 24, 76–78
H H Bu-n	30-60°	Bu-n +	126
cis:trans = 1:1		<i>n-Bu</i> (42) (58)	
Bu-n		\bigcap	
trans. (Z)	130-165° 2.3-22 h	n-Bu (54-88)	62
trans, (E) Dictyopterene A	129–165° 2–26 h (for racemate)	(56-82)	62, 124–12 129, 130,

TABLE I. THERMAL REARRANGEMENTS OF DIVINYLCYCLOPROPANES TO CYCLOHEPTADIENES (Continued)

49

Reactant(s)	Conditions	Product(s) and Yield(s) (%)	Refs
	170° [for (-) isomer]	(S-), 16% opt. pure Dictyopterene C'	123, 132
	75°, 5 h, sealed tube	(R-), (quant)	123
cis, (Z)	66-78°, 1.2-4.5 h	Dictyopterene C (-)	132, 133 62 123, 133
=\	70°		120, 10.
Dictyopterene B		(quant)	123, 128
ele isomer Distuarterene D	209	(30) (racemate = sirenin)	129, 131
cis isomer Dictyopterene D	20*	(quant)	129
=X/=<	180°, 3 h	cis-trans isomerization cis:trans = 1:3 no Cope product	182
n-Bu OTMS	100–110°, 30 min; H ₃ O+	Bu-n	87, 88
12		(74)	
OAc	rt	XX	25
	C ₆ H ₆ , 70°		192
	170°, 3 h	<i>cis-trans</i> isomerization <i>cis:trans</i> = 1:2.6 no Cope product	182
$\gamma^{l} \wedge \gamma$	LDA, TMSCI 165-175°	TMSO	86
cis + trans	210°. C.H., 16 b	(54)	85
II TMSO	220 , Oping, 10 H	(92)	

TABLE I. THERMAL REARRANGEMENTS OF DIVINYLCYCLOPROPANES TO CYCLOHEPTADIENES (Continued)

	Reactant(s)	Conditions	Product(s) and Yield(s) (%)	Refs.
	Ph OTMS	100–110°, 30 min H ₃ O+	(29) Ph	88
Cıı		LDA, THF, -78°; TMSCI, Et ₃ N, -78° to rt; 100-110°, 30 min, neat	TMSO <i>n</i> -Bu (88)	87
C _{is}	$\begin{bmatrix} - & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ MeCOC \equiv CCH_2OTHP \\ & & $	-78°		91
Cia	Сотнр		ОТНР II (90) I:II = 1:8	
		LDA, THF, -78°; TMSCI, Et ₃ N, -78° to rt, 1 h; 100-110°, 30 min, neat	TMSO Ph (85)	87
		– 78°		91
		Xylene, reflux, 24 h	MeCH=/ II (90) I:II = 1:8 Ph (-)	120

Reactant(s)	Conditions	Product(s) and Yield(s) (%)	Refs.
SPh cis trans	25° 160°, sealed tube	PhS (quant) (70)	193
MeO ₂ C PPh 3	THF, reflux	CO ₂ Me CO ₂ Me Ph	89
$\begin{bmatrix} MeO_2C & Ph \\ & & & \\ & & & \\ cis. (Z) \end{bmatrix}$	² Me	(76)	
cis, (E)	THF, reflux	CO ₂ Me CO ₂ Me	
trans, (Z)	200°, 5 h	(-) (quant)	89 90
trans, (E)	200°, 5 h	CO_2Me CO_2Me Ph $(quant)$	90
	LDA, THF, -78°; TBSCI, HMPA, -78° to rt, 2-3 h; 230°, 30-60 min	R = n - Bu (85)	87
OTES CO2Me CO2Me	400°, 1 torr	R = t - Bu (74) (45) no Cope product	194
C ₃₁ ExO ₂ C MeO ₂ C	Xylene, reflux, 24 h	CO ₂ Me CO ₂ Et	120

TABLE I. THERMAL REARRANGEMENTS OF DIVINYLCYCLOPROPANES TO CYCLOHEPTADIENES (Continued)

TABLE I. THERMAL REARRANGEMENTS OF DIVINYLCYCLOPROPANES TO CYCLOHEPTADIENES (Continued)

	Reactant(s)	Conditions	Product(s) and Yield(s) (%)	Refs
C. OLi				
Ó	~	THF	no Cope product	114
R = H R = D	Troffing	Thermolysis $25^{\circ}: t_{1/2} = 1 d$ $40^{\circ}: t_{1/2} = 25 min$ $53^{\circ}: t_{1/2} = 6 min$	(-)	48, 49 187, 195
		60°, THF, ether	(70)	195
Z	\supset	NMR (degenerate rearrangement)	$\bigtriangledown = \bigcirc$	27
с, (С	\geq	rt		196
H N=		30-60°		56
	TWR	Pyridine, piperidine, 100°, 2h	(36) (03) (1)	197
$R = CO_2$	н		(68)	

TABLE II. THERMAL REARRANGEMENTS OF DIVINYLCYCLOPROPANES TO ANNULATED SYSTEMS

Reactant(s)	Conditions	Product(s) and Yield(s) (%)	Refs
	Indene, Na, CHCl ₃	Cl (-)	2, 26
	1. NaOH 2. MnO ₂	$\bigcup_{I} \underbrace{(-)}_{(-)} \underbrace{\prod}_{II}$	198
	Xylene, 142°, 18 h		199
\bigcirc	rt	e S	30, 31
	n	EtO ₂ C (90)	110
	Heat	(84) (64)	88 96, 98
	THF, heat	اللہ (‱) (‱) ↔	92, 96
	-78°, THF, H ₃ O ⁺ , heat	(72)	86, 96

TABLE II. THERMAL REARRANGEMENTS OF DIVINYLCYCLOPROPANES TO ANNULATED SYSTEMS (Continued)

Reactant(s)	Conditions	Product(s) and Yield(s) (%)	Refs
		l	× ×
	- 78°, 1HF, H ₃ O°, neat	(77)	80, 96
	C ₆ H ₆ , t-C ₅ H ₁₁ ONa, reflux, 2 h NaOH, EtOH, 100°, 5 h		18 21
H	NaOH, EtOH, 100, 5 h	(80)	21
H OH also p isomer	C₀H₃OK, EtOH, 121°, 20 h	OH (45)	55
		0	
	- 78°, THF; H ₃ O ⁺ , heat		86, 96
	Xylene, 140°, 10 h	(74) (92) (82)	97 95
		0 <	
	THF, -78°, 1 h; -20°, 1 h; 180°, 15 min	(77)	98
	142°, 18 h	N. (43)	199
$\begin{bmatrix} \downarrow \\ \downarrow $	THF, -78°, 1 h; -20°, 1 h; 180°, 15 min 142°, 18 h	(77)	

	Reactant(s)	Conditions	Product(s) and Yield(s) (%)	Refs.
1	OBu-r	THF, reflux, 3 h	OBu-r	197
1		140°, 2 h	(b) (-)	49
C ₁₃	Men	80°, CHCl ₃ , 4 h	Me_N*	199
		LDA, -78°	(-)	115
		– 78°, THF; H3O ⁺ , heat	(73)	86
		LDA, THF, -78°; TMSCI, Et ₃ N, -78° to rt, 1 h; 100-110°, 30 min, neat		87, 88
		100–110°, 30 min; H ₃ O+	Ŀ	87, 88
		Hexane, reflux, 4 h		95, 96

Reactant(s)	Conditions	Product(s) and Yield(s) (%)	Refs.
Å	o-Dichlorobenzene, sealed tube, 220°, 8 h	ů C	95
H CO ₂ Et	40°	(59) (0)	72, 106
r-BuO CO ₂ H	Pyridine, piperidine, 100°, 2 h	(quant) OBu-f -CO ₂ H	197
C ₁ ,	330°		200
			95, 96
0	 A. o-Dichlorobenzene, reflux, 3 h B. o-Xylene, reflux, 48 h 	A. (91) I:II = $0.8:1.0$ B. (84) I:II = $2.7:1.0$	
	o-Dichlorobenzene; sealed tube, 220°, 12 h		95
R CAL	Xylene, reflux, 3 h; LDA, THF, HMPA, -78°; CH ₃ I	I II (87) I:II = 1:4 R $(-)$ R = H (-) R = Me (90)	201
	LDA, THF, -78°; TMSCI, Et ₃ N, -78° to rt, 1 h; 100-110°, 30 min	TMSO (96)	87, 88

TABLE II. THERMAL REARRANGEMENTS OF DIVINYLCYCLOPROPANES TO ANNULATED SYSTEMS (Continued)

.

Reactant(s)	Conditions	Product(s) and Yield(s) (%)	Refs.
CO2Et	THF, heat	i co,et	92
$\begin{bmatrix} TMSO \\ CO_2Et \\ CO_2Et \end{bmatrix}$	TMSI, HMDS, -20° to rt	CO_2Et $(-)$ TMSO CO_2Et CO_2Et $(quant)$	108, 109
endo isomer $ \begin{array}{c} $	 TMSI, HMDS Flash vacuum pyrolysis, 550° 	TMSO TMSO CO_2Et I (90) I:II = 58:42 TMSO CO_2Et CO_2ET	108, 109
$ \begin{array}{c} $	rt	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	94

TABLE II. THERMAL REARRANGEMENTS OF DIVINYLCYCLOPROPANES TO ANNULATED SYSTEMS (Continued)

Reactant(s)	Conditions	Product(s) and Yield(s) (%)	Refs.
CO2Et	100-140°; CHCl ₃ , sealed tube	(quant)	94
H H CO ₂ Et	CCl ₄ , 55°, 88 h (in NMR tube)	H H CO2Et (quant)	202
H H OTMS	THF, reflux, 18 h; MeOH, 45°, 2 h	(58)	202
OTMS	100–110°, 30 min, H ₃ O*		87, 88
H CO ₂ Et	40°	CO ₂ Et (quant)	106
C _{is}			
$\begin{bmatrix} TMSO \\ CO_2Et \end{bmatrix}$	TMSI, HMDS, −20° to rt; H₃O*	OZEr COZEr (90)	110
PhSLiCu H I I MeO	OMe OMe 0.01 N H ₂ SO ₄ , acetone (1:1), rt, 7 min	OMe (51)	99
CO2Et cis trans	20° Xylene, reflux	(quant) (quant)	97, 203 203

TABLE II.	THERMAL REARRANGEMENTS OF DIVINYLCYCLOPROPANES TO	ANNULATED SYSTEMS	(Continued)
			·/

_	Reactant(s)	Conditions	Product(s) and Yield(s) (%)	Refs.
	CS.	$C_{6}H_{6}$, t- $C_{5}H_{11}ONa$, reflux, 3 h		18
•	OTMS	100–110°, 30 min, H ₃ O+	Ċ	87, 88
C16	Meo CO2Et	130°		97
	OTES CO ₂ Me	Xylene; reflux, 2.5 h	MeO ₂ C OTBS	100, 101
		C ₆ H ₆ , 2.5 h; 200°, sealed tube; 1 N HCI, THF, rt		204
C ₁₇	Ĺ			
	Ph 3P=CHSPh	THF, rt	(65) (15)	9 2
	$ \begin{array}{c} $	THF, rt		94
		H S S S	$I \qquad II$ $R \qquad II$ I	- II (67) (81) (80)

TABLE II. THERMAL REARRANGEMENTS OF DIVINYLCYCLOPROPANES TO ANNULATED SYSTEMS (Continued)

Reactant(s)	Conditions	Product(s) and Yield(s) (%)	Refs.
° R	CHCl ₃ , 100–140°, sealed tube	R = SPh (quant)	94
$R = SPh$ $R = SO_2Ph$ OTBS CO_2Me	Xylene, reflux, 2.5 h	$R = SO_2Pn (quant)$ $MeO_2C \qquad OTBS $ (100)	100, 101
	C ₆ H ₆ , sealed tube, 155°, 5 h; <i>n</i> -Bu ₄ NF, THF, rt	T.	15
H H H CO ₂ Et	LDA, THF, -78°, 45 min; TMSCl, -78°, 20 min; rt, 20 min; CCl, 100°, 2 h; 70°, 15 h	(84) H EtO OTMS (-)	202
H H H H H H H H H H H CO2Et I	CCl ₄ , 18 h; THF:H ₂ O = 2:1, 2 h, 25°	(40) + I (23)	202
OTBS CO2Me	Xylene, reflux, 2.5 h	MeO ₂ C OTES	100, 101
EtO ₂ C H	C ₆ H ₆ , 200°, 2.5 h, sealed tube; 1 N HCl, THF, rt	EtO ₂ C	204

TABLE II. THERMAL REARRANGEMENTS OF DIVINYLCYCLOPROPANES TO ANNULATED SYSTEMS (Continued)

20		LDA, THF, -78°; TBSCl, HMPA; -78° to rt, 2-3 h; 230°, 30- 60 min	H (-)	87
		–78° to rt, H3O+	OTBS (quant)	110, 112
a 	NNHTS	0°		200
3		C ₄ H ₄ , 170–175°, 5 h, sealed tube; <i>n</i> -Bu ₄ NF, THF	o o o o o o o o o o o o o o o o o o o	138
и м	$H = CH = CHCO_2Me$	THF, 3 h	Ph (-)	205
а 1 Ры*	$ \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \end{array} $ $ \begin{array}{c} TBSO \\ H \\ & \\ \end{array} \\ H \\ & \\ \end{array} \\ & \\ \end{array} \\ & \\ \end{array} \\ & \\ \end{array} \\ \begin{array}{c} \\ TBSO \\ H \\ & \\ \end{array} \\ \begin{array}{c} TBSO \\ H \\ & \\ \end{array} \\ \begin{array}{c} TBSO \\ H \\ & \\ \end{array} \\ & \\ \end{array} \\ & \\ \end{array} \\ & \\ \end{array} \\ \begin{array}{c} \\ TBSO \\ H \\ & \\ \end{array} \\ & \\ \end{array} \\ & \\ \end{array} \\ \begin{array}{c} TBSO \\ H \\ & \\ \end{array} \\ & \\ \end{array} \\ & \\ \end{array} \\ \begin{array}{c} TBSO \\ H \\ & \\ \end{array} \\ & \\ \end{array} \\ \begin{array}{c} TBSO \\ H \\ & \\ \end{array} \\ & \\ \end{array} \\ \begin{array}{c} TBSO \\ H \\ & \\ \end{array} \\ & \\ \end{array} \\ \begin{array}{c} TBSO \\ H \\ & \\ \end{array} \\ \begin{array}{c} TBSO \\ H \\ & \\ \end{array} \\ \begin{array}{c} TBSO \\ H \\ & \\ \end{array} \\ \begin{array}{c} TBSO \\ H \\ & \\ \end{array} \\ \begin{array}{c} TBSO \\ H \\ & \\ \end{array} \\ \begin{array}{c} TBSO \\ H \\ & \\ \end{array} \\ \begin{array}{c} TBSO \\ H \\ & \\ \end{array} \\ \begin{array}{c} TBSO \\ H \\ & \\ \end{array} \\ \begin{array}{c} TBSO \\ H \\ & \\ \end{array} \\ \begin{array}{c} TBSO \\ H \\ & \\ \end{array} \\ \begin{array}{c} TBSO \\ H \\ & \\ \end{array} \\ \begin{array}{c} TBSO \\ H \\ & \\ \end{array} \\ \begin{array}{c} TBSO \\ H \\ & \\ \end{array} \\ \begin{array}{c} TBSO \\ H \\ & \\ \end{array} \\ \begin{array}{c} TBSO \\ H \\ & \\ \end{array} \\ \begin{array}{c} TBSO \\ H \\ & \\ \end{array} \\ \begin{array}{c} TBSO \\ H \\ & \\ \end{array} \\ \begin{array}{c} TBSO \\ H \\ & \\ \end{array} \\ \begin{array}{c} TBSO \\ H \\ \\ \end{array} \\ \begin{array}{c} TBSO \\ H \\ & \\ \end{array} \\ \begin{array}{c} TBSO \\ H \\ \\ \end{array} \\ \begin{array}{c} TBSO \\ T \\ \\ T \\ \\ \end{array} \\ \begin{array}{c} TBSO \\ T \\ \\ T \\ \\ T \\ T \\ \end{array} \\ \begin{array}{c} TBSO \\ T \\ \\ T $	0° C.H., 170–175°, 5 h, sealed tube; <i>n</i> -Bu,NF, THF	(-)	

TABLE II. THERMAL REARRANGEMENTS OF DIVINYLCYCLOPROPANES TO ANNULATED SYSTEMS (Continued)

E

TABLE II. THERMAL REARRANGEMENTS OF DIVINYLCYCLOPROPANES TO ANNULATED SYSTEMS (Continued)

TABLE II. THERMAL REARRANGEMENTS OF DIVINYLCYCLOPROPANES TO ANNULATED SYSTEMS (CONUNUEA)

-	Reactant(s)	Conditions	Product(s) and Yield(s) (%)	Refs.
C,	\bigcirc	hv	\bigcirc	7,9
	from benzene solution of CH ₂ N ₂		(-)	
		313 nm 240–390 nm 300–390 nm		206
	Å			
	a	hv, acetone, 3 d		9
	from chlorobenzene solution of CH-N.		(30)	
		hv	= <u> </u>	
	cis + trans cis trans		(49) (49) (42) (56) (56) (42)	187 57 57
C _x	H H H H H H H H H H H H H H H H H H H	hv, n-pentane, 0°, Pyrex	(60) · (40)	126
	OM:c	hv, acetone, 3 d	MeO	9
	from anisole solution of CH_2N_2	<i>hν</i> , 0°, rt		187
C ₁₀	X	hv	X	8
	from dioxane solution of $C_6H_5C_5H_7i$ and CH_5N_5		(16)	
C"			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	art	hv, Fe(CO)5, petroleum ether, 4 h	(15) (15) (CO) ₃ Fe	69
			Tre(CO)3 · C	
			. (30) (24)	

TABLE III. PHOTOCHEMICAL REARRANGEMENTS OF DIVINYLCYCLOPROPANES

	Reactant(s)	Conditions	Product(s) and Yield(s) (%)	Refs
	H H Bu-n N=N	hv, n-pentane, 0°, Pyrex	<i>Bu-n</i> + <i>n-Bu</i> → → → → → → → → → → → → → → → → → → →	126
		hv	(30)	8
C ₂	CAL	$h\nu$, Fe(CO) ₅ , petroleum ether, 4 h	(15) (15) (15) (15) (15) (15) (15) (15)	69
		μν, 98°	(36) (36) (36) (80-90) (80-90)	63
	Å	hv, 12 h, Ph2CO	Ph Ph	65
	HOLH	hv, 3 h, Ph ₂ CO	HO H Ph HO Ph	65
	HOHH	hv, 8 h, Ph ₂ CO	HO H FO Ph Ph	65
	2	hν, 3.5 h, Ph ₂ CO	(78) (78)	65
	×	<i>hν</i> , 8 h, Ph ₂ CO	(69)	65

TABLE III. PHOTOCHEMICAL REARRANGEMENTS OF DIVINYLCYCLOPROPANES (Continuea)

TABLE III. PHOTOCHEMICAL REARRANGEMENTS OF DIVINYLCYCLOPROPANES (Continued)

TABLE IV. TRANSITION-METAL-CATALYZED REARRANGEMENTS OF DIVINYLCYCLOPROPANES

TABLE IV. TRANSITION-METAL-CATALYZED REARRANGEMENTS OF DIVINYLCYCLOPROPANES (Continued)

Reactant(s)	Conditions	Product(s) and Yield(s) (%)	Refs.
$Ph \rightarrow 0$ $Ph \rightarrow 0$ 	Rh ₂ (OAc) ₄ ; CH ₂ Cl ₂ , reflux, 10 min	H Ph (68)	105
$ \begin{bmatrix} 0 \\ + \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Rh ₂ (OAc) ₄ ; CH ₂ Cl ₂ , reflux, 10min	CO ₂ Et (70)	72, 103
C ₁₆ $N_2 = CO_2Et$ $EtO = CO_2Et$ CO_2Et $EtO = CO_2Et$ $EtO = CO_2Et$	Rh ₂ (OAc) ₄ ; CH ₂ Cl ₂ , reflux, 10 min	OEt CO ₂ Et (77)	102
	Rh ₂ (OAc) ₄ ; CH ₂ Cl ₂ , reflux, 10 min	H Ph (76)	105

TABLE IV. TRANSITION-METAL-CATALYZED REARRANGEMENTS OF DIVINYLCYCLOPROPANES (Continued)

TABLE IV. TRANSITION-METAL-CATALYZED REARRANGEMENTS OF DIVINYLCYCLOPROPANES (Continued)

TABLE IV. TRANSITION-METAL-CATALYZED REARRANGEMENTS OF DIVINYLCYCLOPROPANES (Continued)

TABLE IV. TRANSITION-METAL-CATALYZED REARRANGEMENTS OF DIVINYLCYCLOPROPANES (Continued)

	Reactant(s)	Conditions	Product(s) and Yield(s) (%)	Refs.
C,	Br			
	Br	CH ₃ ONa	$\bigcirc = \bigcirc$	143, 144
		γ-Collidine	Phenol (0)	209
		LiCl, 200°		141
	$= \sqrt[64]{} \cdot \sqrt[(28)]{}$	Heat (steam bath), overnight		142
	(8) pure <i>cis</i> pure <i>trans</i>	CCL, sealed tube, 98° Sealed tube, 230°, 17 h	(48) (43) (0) (quant)	142 147, 173
	$\langle \rangle$	CCL, sealed tube, 98°		148
		192°, 600 torr, 22 h, break seal technique		146
	=C C C	80-130°	OHC	159, 160
	&	170°		157, 158
	C, CH	170°		150–152
C,			$\langle \rangle$	
	cis, (Z) trans, (Z)	95°, 2.5 h, CCL 160°, 1 h	OHC (100) (11)	210, 211

TABLE V. REARRANGEMENTS OF DIVINYLOXIRANES

105

У trans cis б trans cis

C,

1,5-Diazabicyclo[4.3.0]non-5ene

CH₃ONa

Vapor phase; 380° CCl₄, sealed tube, 98°

Vapor phase; 330° CCl₄, sealed tube, 98°

100°, 14 h

H+, Et₂O, H₂O

no Cope product

	Reactant(s)	Conditions	Product(s) and Yield(s) (%)	Ref
		Lewis acid, Et ₂ O, H ₂ O	HO HO no Cope product	143
	CO2Et		$ \bigcup^{O} \bigcup^{CO_2Et} \cdot \bigcup^{CO_2Et} $	166
	0	Flash vacuum thermolysis, 600° Flash vacuum thermolysis, 400°	CHO (33) (33) (67) (0)	
	TMS	90°, CCL, 22 h	TMS (67)	213
C ₁₀		H*, H2O, Et2O	some loss of product due to volatility HO	143
		t-BuOK, Et₂O	()	143
	A M	Thermolysis		158
	MeO ₂ C	NBS, NaI, acetone	$ \begin{array}{c} \overset{\text{MeO}_2C}{\longrightarrow} & \longrightarrow \\ \overset{\text{MeO}_2C}{\longrightarrow} & \overset{\text{O}}{\longrightarrow} \\ \end{array} \\ \end{array} $	143
		120°, CCl ₄ , 15 h	\$ -	213

Reactant(s	s) Conditions	Product(s) and Yield(s) (%)	Refs.
	0 ₂ Me 125°, CCl₄, 12 h	TMS (77)	213, 214
TMS trans, (E) cis, (E)	Me 165°, CCL, 24 h 100°, CCL, 12 h	TMS (20) (84)	213
trans, (Z) cis, (Z) OR	145°, CCL, 42 h 130°, CCL, 24 h	TMS CO_2Me (14) (62) O OAc	213
$TMS = Ac$ $R = Ac$ $R = SO_2CF_3$ $R = TMS$	135°, CCl ₄ , 24 h 90°, CCl ₄ , 12 h 120°, CCl ₄ , 12 h	TMS (94) (77) (78)	213, 214 212 212
CO2Es	Flash vacuum thermolysis, 400°		166
CO2Et	Flash vacuum thermolysis, 550° Flash vacuum thermolysis, 500°	$(trace) (75)$ $R = CO_2Et$ $(trace)$ $(trace)$	166
Br Br	- KOBu-t, ether	(49) $(-)$ $(-)$ $(-)$ $(-)$ $(-)$	143
C ₁₂	400°, 15 torr, neat	$\int_{0}^{p_{h}} \cdot \bigvee_{0}^{p_{h}} \cdot \bigvee_{0}^{p}$	ћ °СНО

TABLE V. REARRANGEMENTS OF DIVINYLOXIRANES (Continued)

	Reactant(s)	Conditions	Product(s) and Yield(s) (%)	Refs
-	TMS TMS			213
	trans cis	16°, CCL, 26 h 95°, CCL, 20 h	(31) (77)	
	TMS	120°, CCL, 12 h	TMS (78)	214
C.	OAc	150°, 2 h	(80) (80)	212
013	n-CeHiford OAc		n-C ₅ H ₁₁ OAc	
	(E) (Z)	140°, 13 h 150°, 26 h	(86) (61)	212
C₁₄		NaI, acetone, 1 d		169
	MeO ₂ C	Heat	CO ₂ Me CO ₂ Me	158
	PhCO ₂ Me	Heat	$(-)$ $Ph \qquad O$ $MeO_2C \qquad (55)$	157
C ₁₅	J.	Biotransformation		170

ш

TABLE VI. REARRANGEMENTS OF DIVINYLAZIRIDINES

	Reactant(s)	Conditions	Product(s) and Yield(s) (%)	Refs.
	CF3 N CF3	rt, overnight or several hours at elevated temperatures, vacuum distillation	$\bigvee_{(-)}^{\mathbf{CF_3}} \mathbf{CF_3}$	172, 176
	NMe	C ₆ H ₆ , heat		173, 215
	N S N	Toluene, reflux	NS (50)	216
C,	Me	80°, 1 h	(quant)	174
	N Me	250°	N Me	174
		Toluene, reflux	(-) S-(H) (40)	216
C ₁₀	CF3 NCF3	50°, 1–2 h; vacuum distillation	$= \underbrace{\bigvee_{(-)}^{CF_3} CF_3}_{(-)}$	172
	Irans cis	320–340° 80–130°	t-Bu−N (85) (−)	165 159

TABLE VI. KEARRANGEMENTS OF DIVINYLAZIRIDINES (Continued)

<u> </u>	Reactant(s)	Conditions	Product(s) and Yield(s) (%)	Refs.
I		Distillation or chromatography		217
	$ \begin{bmatrix} A_{\rm NH} & A_{\rm Ph} \end{bmatrix}^{-\rm CN} \\ \begin{bmatrix} A_{\rm Ph} & A_{\rm Ph} \end{bmatrix}^{-\rm CN} $	CH ₃ CN, reflux	Ph NH CN (70)	176, 178
C _H	$ \begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$	80°	$ \begin{array}{c} $	178

TABLE VI. REARRANGEMENTS OF DIVINYLAZIRIDINES (Continued)

Reactant(s)	Conditions	Product(s) and Yield(s) (%)	Refs
C.			
=	340°		179
= <u>\</u> _		(quant)	
			179
		rv v	
	420° 400° 390° 370°	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
=	Static system break seal technique 90-120°		180
= <u>\</u> _	Static system break seal technique 90-120°	(20-25) I:II = 1:4	100
		I II (20-25) I:II = 1:4	100

TABLE VII. REARRANGEMENTS OF DIVINYLTHIIRANES

Reactant(s)	Conditions	Product(s) and Yield(s) (%)	Refs
=\	90°	$\checkmark \cdot \checkmark$	180
=\\$	100–125°	I II (75) I:II = 52:48 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ $	180
c.	110°, CCL or 300° (vapor phase)		179

TABLE VII. REARRANGEMENTS OF DIVINYLTHIIRANES (Continued)

Reactant(s) Conditions Product(s) and Yield(s) (%) Refs. C. OMe NMe 32 110-130° MMe NMe H-0* ÓMe (-) 32 o-Xylene, reflux, 60 h NCO (60) H 34, 35, 36 80° 350° (-) (-) cis trans C_{II} -OBu-t OBu-t CHO 197 0°, NMR tube n equilibrium: k = 1.1

TABLE VIII. REARRANGEMENTS OF MISCELLANEOUS SYSTEMS

TABLE VIII. REARRANGEMENTS OF MISCELLANEOUS SYSTEMS (Continued)

8. Acknowledgment

We wish to thank Mrs. Arleen N. Somerville, director of University Research Science Library, University of Rochester, for her assistance in searching the chemical literature.

References

- 1. Baeyer, A. Ber. 1894, 27, 810; ibid. 1898, 31, 2067.
- 2. Vogel, E. Angew. Chem. 1960, 72, 4.
- 3. Vogel, E.; Ott, K.-H.; Gajek, K. Justus Liebigs Ann. Chem. 1961, **644**, 172.
- 4. Neureiter, N. P. J. Org. Chem. 1955, 24, 2044.
- Overberger, C. G.; Borchert, A. E. J. Am. Chem. Soc. 1960, 82, 1007, 4896.
- 6. Flowers, M. C.; Frey, H. M. J. Chem. Soc. 1961, 3547.
- 7. Doering, W. von E.; Knox, L. H. J. Am. Chem. Soc. 1950, 72, 2305.
- 8. Doering, W. von E.; Knox, L. H. J. Am. Chem. Soc. 1953, 75, 297.
- Meerwein, H.; Disselnkotter, H.; Rappen, F.; von Rintelen, H.; Van de Vloed, H. Justus Liebigs Ann. Chem. 1957, 604, 151.
- Reissig, H.-U. in *The Chemistry of the Cyclopropyl Group*; Rappoport, Z. Ed., Wiley, Chichester, 1987, Part I, Chapter "8".
- Wong, H. N. C.; Hon, M. Y.; Tse, C. W.; Yip, Y.-C.; Tanko, J.; Hudlicky, T. Chem. Rev. 1989, 89, 165.
- 12. Rhoads, S. J.; Raulins, N. R. Org. React. 1975, 22, 1.
- 13. Gajewski, J. J. in *Hydrocarbon Thermal Isomerizations*, Academic, New York, 1981.
- 14. Milvitskaya, E. M.; Tarakanova, A. V.; Plate, A. F. Russ. Chem. Rev. 1976, **45**, 469.
- 15. Piers, E. in *Comprehensive Organic Chemistry*, Trost, B. M., Fleming, I., Eds., Pergamon, Oxford, in press.
- 16. *The Chemistry of the Cyclopropyl Group*; Rappoport, Z., Ed., Wiley, Chichester, 1987, Parts 1 and 2.
- Julia, S.; Bonnet, Y.; Schaepi, W. C. R. Hebd. Seances Acad. Sci. 1956, 243, 1121.
- 18. Julia, S.; Bonnet, Y. Bull. Soc. Chim. Fr. 1957, 1340, 1347, 1354.
- 19. Van Tamelen, E. E.; Hildahl, G. T. J. Am. Chem. Soc. 1956, 78, 4405.
- 20. Van Tamelen, E. E.; Hildahl, G. T. J. Am. Chem. Soc. 1953, 75, 5451.
- 21. Van Tamelen, E. E.; McNary, J.; Lornitzo, F. A. J. Am. Chem. Soc. 1957, **79**, 1231.
- 22. Goldthwait, D. A.; Peabody, R. A.; Greenberg, G. R. J. Am. Chem. Soc. 1954, **76**, 5257.
- 23. Corey, E. J.; Burke, H. J. J. Am. Chem. Soc. 1954, 76, 5257.
- 24. Corey, E. J.; Burke, H. J. J. Am. Chem. Soc. 1956, 78, 174.
- 25. Corey, E. J.; Burke, H. J.; Remers, W. A. J. Am. Chem. Soc. 1956, 78,

180.

- 26. Parham, W. E.; Reiff, H. E. J. Am. Chem. Soc. 1955, 77, 1177.
- 27. Doering, W. von E.; Roth, W. R. Angew. Chem. Int. Ed. Engl. 1963, **2**, 115.
- 28. Jackman, L. M.; Benesi, A. J. Am. Chem. Soc. 1989, 111, 1512.
- 29. Busch, A.; Hoffmann, H. M. R. Tetrahedron Lett. 1976, 2379.
- 30. Hojo, K.; Seidner, R. T.; Masamune, S. J. Am. Chem. Soc. 1970, **92**, 6641.
- 31. Katz, T. J.; Cheung, J. J.; Acton, N. J. Am. Chem. Soc. 1970, **92**, 6643.
- 32. Paquette, L. A.; Ewing, G. D. J. Am. Chem. Soc. 1978, 100, 2908.
- Ewing, G. D.; Ley, S. V.; Paquette, L. A. J. Am. Chem. Soc. 1978, 100, 2909.
- 34. Vogel, E. Angew. Chem. 1962, 74, 829.
- 35. Vogel, E. Angew. Chem., Int. Ed. Engl. 1963, 2, 1.
- 36. Vogel, E.; Erb, R. Angew. Chem., Int. Ed. Engl. 1962, 1, 53.
- 37. Doering, W. von E.; Roth, W. R. Tetrahedron 1963, 19, 715.
- 38. Doering, W. von E.; Roth, W. R. Angew. Chem. 1968, 75, 27.
- Brown, J. M.; Golding, B. T.; Stofko, Jr. J. J. J. Am. Chem. Soc., Chem. Commun., 1973, 319.
- 40. Arai, M.; Crawford, R. J. Can. J. Chem. 1972, **50**, 2158.
- 41. MacDonald, H. H. J.; Crawford, R. J. Can. J. Chem. 1972, 50, 428.
- 42. Shields, T. C.; Billups, W. E. Chem. Ind. (London) 1969, 619.
- Billups, W. E.; Shields, T. C.; Chow, W. Y.; Deno, N. C. J. Org. Chem. 1972, 37, 3676.
- 44. Baldwin, J. E.; Ullenius, C. J. Am. Chem. Soc. 1974, 96, 1542.
- 45. Ullenius, C.; Ford, P. W.; Baldwin, J. E. J. Am. Chem. Soc. 1972, **94**, 5910.
- 46. Baldwin, J. E.; Fleming, R. H. J. Am. Chem. Soc. 1973, 95, 5256.
- 47. Baldwin, J. E.; Gilbert, K. E. J. Am. Chem. Soc. 1976, 98, 8283.
- 48. Brown, J. M. J. Chem. Soc., Chem. Commun. 1965, 226.
- 49. Aue, D. H.; Meshishnek, M. J. J. Am. Chem. Soc. 1977, 99, 223.
- 50. Hudlicky, T.; Kutchan, T. M.; Naqvi, S. M. Org. React. 1985, 33, 247.
- 51. Hudlicky, T.; Rulin, F.; Lovelace, T.; Reed, J. W. in *Studies in Natural Product Chemistry*, Atta-ur-Rahman, Ed., Elsevier, Amsterdam, 1989, Part B, p. 3.
- 52. Hudlicky, T.; Reed, J. W. in *Comprehensive Organic Chemistry*, Trost, B. M., Fleming, I., Eds., Pergamon, Oxford, 1991, Vol. **5**, Chapter "8".
- 53. Goldschmidt, Z.; Crammer, B. Chem. Soc. Rev. 1988, 17, 229.

- 54. Hudlicky, T.; Price, J. D. Chem. Rev. 1989, **89**, 1467, and references within.
- 55. Marvell, E. N.; Lin, C. J. Am. Chem. Soc. 1978, 100, 877.
- 56. Schneider, M. P.; Csacsko, B. J. Chem. Soc., Chem. Commun. 1977, 330.
- 57. Schneider, M. P. Angew. Chem., Int. Ed. Engl. 1975, 14, 707.
- 58. Schneider, M. P.; Rebell, J. J. Chem. Soc., Chem. Commun. 1975, 283.
- 59. Schneider, M. P.; Rau, A. J. Am. Chem. Soc. 1979, 101, 4426.
- Simonetta, M.; Favini, G.; Mariani, C.; Gramaccioni, P. J. Am. Chem. Soc. 1968, **90**, 1280.
- 61. Hammond, G. S.; DeBoer, C. D. J. Am. Chem. Soc. 1964, 86, 899.
- Pickenhagen, W.; Naf, F., Ohloff, G.; Muller, P.; Perlberger, J. C. Helv. Chim. Acta, 1973, 56, 1868.
- Wender, P. A.; Eissenstat, M. A.; Filosa, M. P. J. Am. Chem. Soc. 1979, 101, 2196.
- 64. Nitta, M.; Kuroki, T. Bull. Chem. Soc. Jpn. 1982, 55, 1323.
- 65. Nitta, M.; Sugiyama, H. Bull. Chem. Soc. Jpn. 1982, 55, 1127.
- 66. Sarel, S.; Langbeheim, M. J. Chem. Soc., Chem. Commun. 1977, 593.
- 67. Sarel, S. Acc. Chem. Res. 1978, 11, 204.
- 68. Sarel, S.; Langbeheim, M. J. Chem. Soc., Chem. Commun. 1977, 827.
- 69. Sarel, S.; Langbeheim, M. J. Chem. Soc., Chem. Commun. 1979, 73.
- 70. Brown, J. M.; Golding, B. T.; Stofko, Jr., J. J. J. Chem. Soc., Perkin Trans. 2, 1978, 436.
- 71. Alcock, N. W.; Brown, J. M.; Conneely, J. A.; Stofko, Jr., J. J. J. Chem. Soc., Chem. Commun., 1975, 234.
- 72. Davies, H. M. L.; Clark, D. M.; Smith, T. K. Tetrahedron Lett. 1985, **26**, 5659.
- 73. Hudlicky, T.; Koszyk, F. J. Tetrahedron Lett. 1980, 21, 2487; refs. 50-52.
- 74. Spangler, C. W. Chem. Rev. 1976, 76, 187.
- 75. Frey, H. M.; Walsh, R. Chem. Rev. 1969, 69, 103.
- 76. Wallach, O.; Kohler, H. Ann. 1905, 339, 94.
- 77. Wallach, O. Ann. 1899, 305, 223, 274.
- 78. Clarke, R. W. L.; Lapworth, A. J. Chem. Soc. 1910, 97, 11.
- 79. Zelinskii, N. D.; Dengin, E. F. Ber. 1922, 55B, 3354.
- Julia, S.; Bonnet, Y.; Schaeppi, W. C. R. Hebd. Seances Acad. Sci. 1956, 243, 1121.
- 81. Dewar, M. J. S.; Pettit, R. Chem. Ind. (London) 1955, 199.
- 82. Moss, R. A.; Munjal, R. C. Synthesis, 1979, 425.

- 83. Schweizer, E. E.; Parham, W. E. J. Am. Chem. Soc. 1960, 82, 4085.
- 84. Muller, P.; Rey, M. Helv. Chim. Acta, 1982, 65, 1191.
- 85. Marino, J. P.; Ferro, M. P. J. Org. Chem. 1981, 46, 1912.
- 86. Wender, P. A.; Filosa, M. P. J. Org. Chem. 1976, 41, 3490.
- 87. Piers, E.; Burmeister, M. S.; Reissig, H. U. Can. J. Chem. 1986, 64, 180.
- 88. Piers, E.; Reissig, H.-U. Angew. Chem., Int. Ed. Engl. 1979, 18, 791.
- Brule, D.; Chalchat, J. C.; Vessiere, R. Bull. Soc. Chim. Fr. 1978, No. 7-8, II-385.
- Brule, D.; Chalchat, J. C.; Garry, R. P.; Lacroix, B.; Michet, A.; Vessiere, R. Bull. Chim. Soc. Fr. 1981, *No.* 1-2, II-57.
- 91. Marino, J. P.; Browne, L. J. Tetrahedron Lett. 1976, 3245.
- 92. Marino, J. P.; Kaneko, T. Tetrahedron Lett. 1973, 3975.
- 93. Marino, J. P.; Kaneko, T. Tetrahedron Lett. 1973, 3971.
- 94. Marino, J. P.; Kaneko, T. J. Org. Chem. 1974, 39, 3175.
- 95. Piers, E.; Nagakura, I.; Morton, H. E. J. Org. Chem. 1978, 43, 3630.
- Piers, E.; Morton, H. E.; Nagakura, I.; Thies, R. W. Can. J. Chem. 1983, 61, 1226.
- 97. Bradbury, R. H.; Gilchrist, T. L.; Rees, C. W.; J. Chem. Soc. Perkin Trans. 1 1981, 3225.
- 98. Piers, E.; Nagakura, I. Tetrahedron Lett. 1976, 3237.
- 99. Wender, P. A.; Hillemann, G. L.; Szymonifka, M. J. Tetrahedron Lett. 1980, **21**, 2205.
- 100. Piers, E.; Ruediger, E. H. J. Org. Chem. 1980, 45, 1725.
- 101. Piers, E.; Jung, G. L.; Ruediger, E. H. Can. J. Chem. 1987, 65, 670.
- 102. Davies, H. M. L.; Smith, H. D.; Korkor, O. Tetrahedron Lett. 1987, **28**, 1853.
- 103. Davies, H. M. L.; Clark, D. M.; Alligood, D. B.; Eiband, G. R. Tetrahedron, 1987, **43**, 4265.
- 104. Davies, H. M. L.; Oldenburg, C. E. M.; McAfee, M. J.; Nordahl, J. G.; Henretta, J. P.; Romines, K. R. Tetrahedron Lett. 1988, **29**, 975.
- 105. Davies, H. M. L.; McAfee, M. J.; Oldenburg, E. M. J. Org. Chem. 1989, **54**, 930.
- 106. Davies, H. M. L.; Clark, J.; Church, L. A. Tetrahedron Lett. 1989, **30**, 5057.
- 107. Davies, H. M. L.; Smith, H. D., Wake Forest University, Winston–Salem, NC, personal communication.
- 108. Fleming, A.; Sinai-Zingde, G.; Natchus, M. G.; Hudlicky, T. Tetrahedron Lett. 1987, **28**, 167.
- 109. Hudlicky, T.; Sinai-Zingde, G.; Natchus, M. G.; Ranu, B. C.;

Papadopolous, P. Tetrahedron, 1987, 28, 5685.

- 110. Hudlicky, T.; Fleming, A.; Radesca, L. J. Am. Chem. Soc. 1989, **111**, 6691.
- 111. Hudlicky, T.; Fleming, A.; Heard, N. J. Org. Chem. 1990, 55, 2570.
- 112. Hudlicky, T.; Van Nguyen, P. Virginia Polytechnic Institute and State University, Blacksburg, VA, unpublished results.
- 113. Majetich, G.; Hull, K. Tetrahedron Lett. 1988, 29, 2773.
- 114. Piers, E., University of British Columbia, Vancouver, BC, personal communication.
- 115. Heathcock, C., University of California, Berkeley, CA, personal communication.
- 116. Hudlicky, T.; Heard, N.; Wild, C.; Boros, E., Virginia Polytechnic Institute and State University, Blacksburg, VA, unpublished results.
- 117. Nakamura, E.; Isaka, M.; Matsuzawa, S. J. Am. Chem. Soc. 1988, **110**, 1297.
- 118. Wulff, W. D.; Yang, D. C.; Murray, C. K. J. Am. Chem. Soc. 1988, **110**, 2653.
- 119. Schreiber, von J.; Leimgruber, W.; Pesaro, M.; Schudel, P.; Threlfall, T.; Eschenmoser, A. Helv. Chim. Acta 1961, **65**, 540.
- 120. Wenkert, E.; Kim, H. S. in *Studies in Natural Product Chemistry*, Atta-ur-Rahman, Ed., Elsevier, Amsterdam, 1989, Part B, p. 287.
- 121. Moore, R. E.; Pettus, Jr., J. A.; Doty, M. S. Tetrahedron Lett. 1968, 4787.
- 122. Pettus, Jr., J. A.; Moore, R. E. J. Chem. Soc., Chem. Commun. 1970, 1093.
- 123. Pettus, Jr., J. A.; Moore, R. E. J. Am. Chem. Soc. 1971, 93, 3087.
- 124. Moore, R. E.; Pettus, J. A., Jr.; Mistysyn, J. J. Org. Chem. 1974, 39, 2201.
- 125. Moore, R. E. Acc. Chem. Res. 1977, **10**, 40.
- 126. Schneider, M.; Erben, A. Angew. Chem., Int. Ed. Engl. 1977, 16, 192.
- 127. Ohloff, von G.; Pickenhagen, W. Helv. Chim. Acta, 1969, 52, 880.
- 128. Schneider, M. P.; Rau, A. Angew. Chem., Int. Ed. Engl. 1979, 18, 231.
- 129. Schneider, M. P.; Goldbach, M. J. Am. Chem. Soc. 1980, **102**, 6114.
- 130. Das, K. C.; Weinstein, B. Tetrahedron Lett. 1969, 3459.
- 131. Jaenicke, L.; Akintobi, T.; Muller, D. G. Angew. Chem., Int. Ed. Engl. 1971, **19**, 492.
- 132. Colobert, F.; Genet, J. P. Tetrahedron Lett. 1985, 26, 2779.
- 133. Schotten, T.; Boland, W.; Jaenicke, L. Tetrahedron Lett. 1986, 2349.
- 134. Nicolau, K. C.; Webber, S. J. Chem. Soc., Chem. Commun. 1984, 350.
- 135. Conner, D. T.; Klutchko, S.; Strandtmann, M. J. Antibiotics 1979, 32, 368.
- 136. Piers, E.; Ruediger, E. H. Can. J. Chem. 1983, 61, 1239.
- 137. Wender, P. A.; Brighty, K. Tetrahedron Lett. 1988, **29**, 6741.
- 138. Piers, E.; Moss, N. Tetrahedron Lett. 1985, 26, 2735.
- 139. Piers, E.; Jung, G. L. Can. J. Chem. 1987, 65, 1668.
- 140. Piers, E.; Jean, M.; Marrs, P. S. Tetrahedron Lett. 1987, 28, 5075.
- 141. Braun, R. A. J. Org. Chem. 1963, 28, 1383.
- 142. Stogryn, E. L.; Gianni, M. H.; Passannante, A. J. J. Org. Chem. 1964, **29**, 1275.
- 143. Vogel, E.; Gunther, H. Angew. Chem., Int. Ed. Engl. 1967, 6, 385.
- 144. Gunther, H. Tetrahedron Lett. 1965, 4085.
- 145. Crawford, R. J.; Vukov, V.; Tokunaga, H. Can. J. Chem. 1973, 51, 3718.
- 146. Vukov, V.; Crawford, R. J. Can. J. Chem. 1975, 3, 1367.
- 147. Pommelet, J. C.; Manisse, N.; Chuche, J. Tetrahedron, 1972, 28, 3929.
- 148. Paladini, J. C.; Chuche, J. Bull. Soc. Chim. Fr. 1974, No. 1-2, 197.
- 149. Eberbach, W.; Trostmann, U. Tetrahedron Lett. 1977, 3569.
- 150. Eberbach, W.; Roser, J. Heterocycles 1985, 23, 2797.
- 151. Eberbach, W.; Roser, J. Tetrahedron 1986, 42, 2221.
- 152. Eberbach, W.; Roser, J. Tetrahedron Lett. 1987, 28, 2685.
- 153. Roser, J.; Eberbach, W. Tetrahedron Lett. 1984, 25, 2455.
- 154. Eberbach, W.; Trostmann, U. Chem. Ber. 1985, 118, 4035.
- 155. Eberbach, W.; Trostmann, U. Chem. Ber. 1981, 114, 2979.
- 156. Eberbach, W.; Seiler, W.; Fritz, H. Chem. Ber. 1980, 113, 875.
- 157. Eberbach, W.; Konig, G.; Trostmann, U. Tetrahedron Lett. 1979, 4649.
- 158. Eberbach, W.; Burchardt, B.; Trostmann, U. Tetrahedron Lett. 1979, 4049.
- 159. Manisse, N.; Chuche, J. J. Am. Chem. Soc. 1977, 99, 1272.
- 160. Chuche, J.; Beny, J. P.; Pommelet, J. C., Université de Reims Champagne-Ardenne, Reims, France, personal communication.
- 161. Bourelle-Wargnier, F.; Vincent, M.; Chuche, J. Tetrahedron Lett. 1978, 283.
- 162. Pommelet, J. C.; Manisse, N.; Chuche, J. C. R. Hebd. Seances Acad. Sci. 1970, **270**, 1894.
- 163. Paladini, J. C.; Chuche, J. Tetrahedron Lett. 1971, 4383.
- 164. Beny, J. P.; Pommelet, J. C.; Chuche, J. Bull. Soc. Chim. Fr. 1981, *No.* 9-10, 377.
- 165. Manisse, N.; Chuche, J. Tetrahedron, 1977, 33, 2399.
- 166. Hudlicky, T.; Fleming, A.; Lovelace, T. C. Tetrahedron 1989, 45, 3021.
- 167. Hudlicky, T.; Lovelace, T. C. Synth. Commun. 1990, 20, 1721.
- 168. Hudlicky, T.; Barbieri, G. J. Am. Chem. Soc., submitted.

- 169. Cleve, A.; Bohlmann, F. Tetrahedron Lett. 1989, **30**, 1241.
- 170. Cox, P. J.; Sim, G. A.; Roberts, J. S.; Herz, W. J. Chem. Soc., Chem. Commun. 1973, 428.
- 171. Stogryn, E. L.; Brois, S. J. J. Org. Chem. 1965, 30, 88.
- 172. Stogryn, E. L.; Brois, S. J. J. Am. Chem. Soc. 1967, 89, 605.
- 173. Pommelet, J. C.; Chuche, J. Tetrahedron Lett. 1974, 3897.
- 174. Pommelet, J. C.; Chuche, J. Can. J. Chem. 1976, 54, 1571.
- 175. Figeys, H. P.; Jammar, R. Tetrahedron Lett. 1981, 22, 637.
- 176. Hassner, A.; Chau, W.; D'Costa, R. Israel J. Chem. 1982, 22, 76.
- 177. Attia, M.; Gelas-Mialhe, Y.; Vessiere, R. Chem. Lett. 1979, 1095.
- 178. Hassner, A.; D'Costa, R.; MacPhail, A.; Butler, W. Tetrahedron Lett. 1981, **22**, 3691.
- 179. Pommelet, J. C.; Chuche, J. J. Chem. Res. (S), 1979, 56.
- 180. Schneider, M. P.; Schnaithmann, M. J. Chem. Soc. 1979, 101, 254.
- 181. Doering, W. von E.; Goldstein, M. J. Tetrahedron, 1959, **5**, 53.
- 182. Sasaki, T.; Eguchi, S.; Ohno, M. J. Org. Chem. 1972, 37, 466.
- 183. Rhoads, S. J.; Brandenburg, C. F. J. Am. Chem. Soc. 1971, 93, 5813.
- 184. Ahlgren, G. Tetrahedron Lett. 1979, 915.
- 185. Van der Plas, H. C. in *Ring Transformations of Heterocycles*, Academic Press, New York, 1973, Parts 1 and 2.
- 186. Katritzky, A. R.; Rees, C. W., Eds., *Comprehensive Heterocyclic Chemistry*, Pergamon, Oxford, 1984 (a new version of this comprehensive series is due in 1991).
- 187. Schneider, M. P.; Mossinger, G. Tetrahedron Lett. 1974, 3081.
- 188. Gajewski, J. J.; Hawkins, C. M.; Jimenez, J. L. J. Org. Chem. 1990, **55**, 674.
- 189. Collonges, F.; Descotes, G. Tetrahedron Lett. 1976, 1673.
- 190. Dolbier, Jr. W. R.; Alonso, J. H. J. Am. Chem. Soc. 1972, 94, 2544.
- 191. Alonso, J. H.; Dolbier, Jr. W. R.; Frey, H. M. Int. J. Chem. Kinet. 1974, 6, 893.
- 192. L'Abbe, G.; Gelinne, M.; Toppet, S. J. Heterocycl. Chem. 1988, 25, 1741.
- 193. Cairns, P. M.; Crombie, L.; Pattenden, G. Tetrahedron Lett. 1982, **23**, 1405.
- 194. Vogel, E.; Grimme, W.; Korte, S. Tetrahedron Lett. 1965, 3625.
- 195. Cupas, C.; Watts, W. E.; Schleyer, P. von R. Tetrahedron Lett. 1964, 2503.
- 196. Baird, M. S.; Reese, C. B. J. Chem. Soc., Chem. Commun. 1970, 1519.
- 197. Klumpp, G. W.; Barnick, J. W. F. K.; Veefkind, A. H.; Bickelhaupt, F. Recl. Trav. Chim. 1969, **88**, 766.

- 198. Paquette, L. A.; Doehner, Jr. R. F.; Jenkins, J. A.; Blount, J. F. J. Am. Chem. Soc. 1980, **102**, 1188.
- 199. Maas, G.; Hummel, C. Chem. Ber. 1980, 113, 3679.
- 200. Vedejs, E.; Shepherd, R. A.; Steiner, R. P. J. Am. Chem. Soc. 1970, **92**, 2158.
- 201. Piers, E.; Ruediger, E. H. J. Chem. Soc., Chem. Commun. 1979, 166.
- 202. Vedejs, E.; Wilber, W. R.; Twieg, R. J. Org. Chem. 1977, 42, 401.
- 203. Bradbury, R. H.; Gilchrist, T. L.; Rees, C. W. J. Chem. Soc., Chem. Commun. 1979, 528.
- 204. Piers, E.; Jung, G. L.; Moss, N. Tetrahedron Lett. 1984, 25, 3959.
- 205. Tsuge, O.; Noguchi, M.; Moriyama, H. Heterocycles 1982, **19**, 1823.
- 206. Rubin, M. B.; Patyk, A.; Sander, W. Tetrahedron Lett. 1988, 29, 6641.
- 207. Durr, H.; Schrader, L. Angew. Chem., Int. Ed. Engl. 1969, **8**, 446; Chem. Ber. 1970, **103**, 1334.
- 208. Durr, H.; Schmitz, H. Angew. Chem., Int. Ed. Engl. 1975, 14, 647.
- 209. Meinwald, J.; Nozaki, H. J. Am. Chem. Soc. 1958, 80, 3132.
- 210. Sutbeyaz, Y.; Secen, H.; Balci, M. J. Org. Chem. 1988, 53, 2312.
- 211. Balci, M.; Sutbeyaz, Y. Tetrahedron Lett. 1983, 24, 4135.
- 212. Clark, D. L.; Chou, W. N.; White, J. B. J. Org. Chem. 1990, **55**, 3975. Pays-Bas 1969, **88**, 766.
- 213. White, J. B., University of Texas at Arlington, Arlington, TX, personal communication.
- 214. Chou, W. N.; White, J. B. Tetrahedron Lett. 1991, **32**, 157.
- 215. Grimme, W.; Seel, K. Angew. Chem., Int. Ed. Engl. 1973, 12, 507.
- 216. Figeys, H. P.; Jammar, R. Tetrahedron Lett. 1980, 21, 2995.
- 217. Sauleau, A.; Sauleau, J.; Bourget, H.; Huet, J. C. R. Acad. Sci. Paris 1974, 279.
- 218. Quast, H.; Stawitz, J. Tetrahedron Lett. 1977, 2709.

Organocopper Reagents: Substitution, Conjugate Addition, Carbo/Metallocupration, and Other Reactions

Bruce H. Lipshutz, University of California, Santa Barbara, California Saumitra Sengupta, University of California, Santa Barbara, California

1. Introduction

Well over a decade ago, two reviews were contributed to the Organic *Reactions* series covering substitution and conjugate addition reactions in organocopper chemistry. (1) Their appearance, which highlighted most of the early work in this field, served not only as a source of invaluable references to original literature reports, but also stimulated a vast number of subsequent studies on the properties and uses of organocopper complexes. That these reagents are of tremendous value to the domain of synthetic organic chemistry is hardly open to debate; (2) indeed it is rare not to find a copper-mediated carbon-carbon bond-forming transformation in journals that cater to organic chemistry. Collman and Hegedus summed up the situation some years ago in their text on organotransition metal chemistry by stating, "Of all the transition-metal organometallic reagents developed for application to organic synthesis, organocopper complexes are by far the most heavily used and enthusiastically accepted by the synthetic chemist," (3) Research in this area since these remarks of 1980 has expanded considerably. Fortunately, numerous reviews addressing specific subdivisions of organocopper chemistry have filled the need to keep pace with the advances being made. (4)

The work cited in this chapter, which dates from ca. 1975, concerns in large measure uses of organocopper complexes originating from either catalytic or stoichiometric quantities of a copper(I) halide together with a Grignard (RMgX) or organolithium (RLi) reagent. These combinations form either neutral organocopper reagents RCu (1) or copper(I) monoanionic salts R_2CuM (M = Li or MgX), commonly referred to as "lower-order" species. The latter *ate* complexes with lithium as gegenion (i.e., 2) are also known as "Gilman reagents" in recognition of their origins (Eqs. 1 and 2). (5) Copper(I) cyanide is also an excellent precursor, affording homogeneous mixtures of lower order cyanocuprates RCu(CN)Li, 3, upon treatment with an equivalent of an organolithium (Eq. 3). The strength of the Cu — CN linkage presumably accounts for direct cuprate formation with 1 equivalent of the organolithium, rather than the metathesis that occurs with copper(I) chloride, bromide, or iodide.

While use of reagents 1, 2, and 3 alone can be aptly classified as broad-based and intense, their importance has further encouraged extensive development of variations on these themes (i.e., their composition and reactivity profiles). Reagents 1–3 have been found to be unexpectedly compatible with certain electrophilic additives at low temperatures, which substantially alter their reactivity. Rather than forming 2 from 2 equivalents of the same RLi, different organolithiums can be utilized to give $R_T R_R CuLi$, 4, conserving potentially valuable RLi. This scenario raises the question of controlling the selectivity of transfer of the desired ligand R_T rather than the anticipated residual (or "dummy") group R_R from copper to electrophilic carbon (Eq. 4). Fortunately, many solutions to this problem now exist.

The most recent arrivals to the fold of organocopper chemistry are those species resulting from a composite of the principles delineated in Eqs. 2–4.

That is, admixture of 2RLi (or $R_TLi + R_RLi$) with copper(I) cyanide proceeds beyond the stage of **3** to ultimately arrive at copper(I) dianionic complexes **5**, the so-called "higher-order" cyanocuprates (Eq. 5). (6) Undoubtedly it is the cyano ligand, with its π -acidic nature, which enables copper to accept a third negatively charged ligand. Although reagents **5** do not yet share in all of the

$CuCN + 2 RLi (or R_TLi + R_RLi) \longrightarrow [RCu(CN)Li + RLi]$ $----- R_2Cu(CN)Li_2 \qquad (5)$ 5 a "higher order" = cyanocuprate

benefits offered by time in comparison with their lower-order counterparts, they nicely complement prior art. Moreover, as with species 1–4, they continue to evolve, providing the synthetic community with alternatives for highly selective and efficient means of making key carbon–carbon bonds.

2. Mechanism

The popularity of organocopper complexes as reagents in organic synthesis has spawned numerous mechanistic investigations of both substitution and conjugate addition schemes. Studies of the former, most often involving homogeneous solutions of cuprates (rather than neutral organocopper species, RCu), corroborate an earlier assessment that no single interpretation can account for all of the mechanistic and stereochemical results gathered to date. (7) Variations in the nature of the leaving group, the hybridization of the carbon undergoing the reaction in the substrate, and the effects of other functionality located within the molecule may all contribute to the course followed. In addition, since it now appears that the organocuprate itself within a given class [e.g., lower-order homocuprates, R_2CuLi (7) or higher-order cuprates $R_2Cu(CN)Li_2$ (8)] may vary as a function of solvent, mode of preparation, and presence of additives, the likelihood of finding a common denominator seems slim. However, there are many valuable generalizations concerning specific substrate types that can be made and utilized to advantage in synthetic situations.

2.1.1.1. Substitution Reactions

Proposed mechanisms for substitutions of halides or sulfonates usually involve a direct displacement by R in R₂CuLi in an S_N2 process, or attack by the cuprate itself to afford a transient Cu(III) intermediate, followed by reductive elimination (Eq. 6). An early case opposing

involvement of a Cu(III) species has been made, (9) as has an alternative proposal invoking a dimeric cuprate wherein each copper atom donates one electron [i.e., to form two Cu(II) atoms] toward a net two-electron change, thereby avoiding a highly unstable Cu(III) oxidation state. (10) Examples of copper complexes of this formal oxidation level are known; however, they generally tend to require good σ -donor ligands for stabilization. (11-15) Arguments in favor of a Cu(III) intermediate are further strengthened by analogy to reactions of dialkylgold(I) reagents, (16) which give documented Au(III) intermediates. (17) Reductive elimination from the Cu(III) to the Cu(I)

state, as with the corresponding aurates, occurs following their generation via alkyl radical addition to cupric acetate (Eq. 7). (18)

Implied in both mechanisms (Eq. 6) is the stereochemistry at the reacting carbon center, which is predicted to undergo a net inversion. Tosylates (19) and epoxides (20) do give products of inversion, but recent evidence shows that such is not the case with all reactive halides. (21, 22) That is, iodides typified by

(+)-2-iodooctane lead to racemized products, while chiral nonracemic bromides give results akin to sulfonates (Eq. 8). (21, 22) The necessity for a pathway proceeding through free radicals in the case of iodides is borne out from experiments with various radical traps, for example, 6-halo-1-heptenes (Eq. 9). (23) With X = I, cyclopentane-containing products predominate by ratios of 3–4:1 over straight-chain products of substitution. Even bromides lead to finite percentages of cyclic material, implying that more than one mechanism is operative. α -Deuterium and ¹³C secondary kinetic isotope effects associated with these displacements have also been measured. (24)

Several more recent reports have appeared suggesting Cu(III) intermediates in reactions of widely varying systems, including allylio (25) and propargylic (26-30) halides, sulfonates and esters, allenes, (31) α -dihalo esters, (32, 33) and others. (34) Propargylic acetates, tosylates, and halides produce substituted allenes resulting from predominantly *anti* addition (Eq. 10). Trapping experiments at low temperatures implicate a Cu(III) intermediate, which gives a coupling

product upon warming. (26) Allenic bromides, likewise and in concert, are converted back into the corresponding acetylenes without loss of stereochemical information, perhaps via initial "bidentate binding" as illustrated in complex 6. (31) Interestingly, these same cuprates, as well as those derived from Grignard reagents with catalytic amounts of copper(I) halides, racemize (unactivated) chiral allenes, probably by way of radical anions 7 formed by electron transfer from R₂CuLi. Rates of loss of optical activity are greater in tetrahydrofuran than in diethyl ether solutions. (35)

Single electron transfer (SET) chemistry of organocuprates has also been observed with several other substrate types. Many alkyl aryl ketones (36) and diaryl ketones (37) of varying substitution patterns and reduction potentials react in a 1,2 sense with R₂CuLi, presumably by way of electron transfer. It is often not possible, though, to rule out the direct 1,2 addition by electron-rich d^{10} copper(I) in R₂Cu⁻, even though this should be disfavored by " α -effect" (38-40) repulsion. Similar intermediate roles for anion radicals are described in reactions of Me₂CuLi with cyclopropyl ketones 41a and enones, 41b and of Ph₂CuMgBr on nitrosobenzene. (42) Supporting studies on the oxidation potentials of cuprates (e.g., [PhCuOR]⁻) (43) and RCu, (44) as well as on reduction potentials of selective substrates in ethereal media, have also been reported. (45)

Reductions of alkyl halides, a competitive pathway in cuprate couplings, have been suggested to take place by way of copper hydrides, CuH·L, formed

$$\begin{bmatrix} \text{RCHCH}_2\text{Cu} \cdot \text{L} \\ | \\ \text{H} \end{bmatrix} \longrightarrow \text{RCH}=\text{CH}_2 + \text{CuH}$$
(11)

via β elimination from an organocopper species (Eq. 11). (46) Similar outcomes, however, are realized when β -hydride elimination is unlikely or cannot occur, for example, with Ph₂CuLi or Me₂CuLi. (47) The ultimate source of hydrogen in the reduced product has yet to be ascertained. Functional group replacements by hydrogen in olefinic (48) and (hetero)aromatic substrates (49) have also been reported, where single-electron transfer

processes may play a role.

Alkyl tosylates in hindered systems, rather than undergoing reduction, react through a concerted *anti*-elimination mechanism involving Li^+ as a Lewis acid in a "push–pull" process. When such an action induced by R₂CuLi (R = Me, Ph) is precluded, skeletal reorganization ensues (Eq. 12). (50)

The proximity of certain functional groups to the sp^3 carbon bearing a leaving group can dramatically alter both the anticipated products and the mechanistic picture. Cyclopropyl tosylates give ring-opened materials, a process that may involve a "cuprate(I)–cation complex". (51) Homoallylic steroidal tosylates (e.g., of cholesterol) of defined stereochemistry react with R₂CuLi with retention of configuration, suggesting participation of the 5,6 double bond. (51)

Alkylations of cyclic and acyclic allylic systems in particular have been scrutinized as to their regio- and stereochemical outcomes in reactions with organocuprates. In general, products reflecting anti stereochemistry are favored, although this can be reversed (i.e., to give syn products) depending upon the leaving group, 52,53a,b steric factors, (54-57) and type of substrate. 53a,c Early views promoted the orbital distortion technique, suggesting an initial radical anion. (58) More recent studies point to a rate-determining formation of a σ -allylcopper(III) complex 9 σ , originating from S_N2' attack by copper following prior cuprate complexation with the olefin (as in complex 8). (59, 60) Reductive elimination from 9 σ with retention of configuration would give anti product 10. Alternatively, copper species 9 σ may rapidly isomerize to a π -allyl species 9 p (L = alkyl), resulting in the potential loss of regiocontrol. Intermediate 9 may then partition itself between products 10 and 11 depending on stereoelectronic and steric factors. It should be noted that formation of 10 and/or 11 indicates that rates of reductive elimination vs. isomerization can be altered by changes of the ligand L on copper. (61) Similar mechanistic interpretations have been advanced for Cu(I)-catalyzed Grignard couplings. (62) An alternative view postulates overlap between a diffuse copper(I) d

orbital and the appropriate LUMO of the allylic system, as in 12. Simultaneous $d\pi^*$

(at the γ carbon) and $d \sigma^*$ (at the α carbon) bonding accounts for the S_N2¢ preference with net *anti* stereochemistry. (39)

2.1.1.2. Conjugate Additions

The mechanistic picture for cuprate conjugate addition reactions is no less complicated than that put forth for substitution reactions. Several different proposals have evolved over the past decade, for the most part based on studies involving Gilman lithio cuprates (R₂CuLi). With the advent of additives (e.g., boron trifluoride etherate, chlorotrimethylsilane) now commonly employed in reactions of this type, the situation has been made all the more complex.

The correlation of reduction potentials of α , β -unsaturated carbonyl systems with cuprate reactivity, and the generally recognized need for oxygen as part of

the chromophore, have given rise to a proposal involving a single electron transfer mechanism. (63, 64) Initial Lewis acid–Lewis base interaction (13, Scheme 1) encourages transfer of an electron from a dimeric cuprate to the enone (or enoate), followed by formation of a copper–carbon bond as in species 14. Reductive elimination from the Cu(III) species 14 affords the enolate, although the exact nature of M in species 15 is still an open question. (65-67) Intermediate 14 can also arise by way of an initial charge transfer complex. (68, 69) Still more direct would be the addition of the reagent to the β carbon atom

of the substrate. (19, 70, 71) Kinetic data on these Michael reactions indicate the existence of an equilibrium between reactants and some intermediate that goes on to form a Cu(III) species in an intramolecular manner, placing copper at the β carbon of an enolate. (72-74) Lithium ion coordination with the carbonyl oxygen would assist when geometrically possible from within the cuprate cluster, or when free LiX is present. (73) Scheme 1.

This notion of an early intermediate complex (beyond that of simple Li⁺ coordination) has gained considerable momentum since being originally put forth. (75) Cogent evidence for binding between copper and π^* of the enone comes both from infrared spectroscopic studies of reactions involving unsaturated esters, (76) as well as low-temperature ¹H and ¹³C NMR spectroscopy (77, 78) of reactions of Me₂CuLi or Me(2-thienyl)CuLi with cinnamate esters. Complexation between copper(I) and olefins is supported by Hartree–Fock–Slater (HFS) calculations suggesting involvement of metal 3d B alkene π^* interactions. (79) Experiments designed to further substantiate the spectroscopic data using enone 16 suggest that, following reversible $d\pi^*$ interaction, the cuprate adds to the β position (also in a reversible sense) to afford a Cu(III) adduct. This intermediate can then go on to product(s) 17 and/or 18 depending on solvent(s) and the presence (or lack) of chlorotrimethylsilane in the medium. In diethyl ether at -78°, a yellow precipitate is observed and can be separated from the solution. Subsequent redissolution in tetrahydrofuran leads to the expected products (17, 18), implying that the unknown material is a cuprate-enone complex. (80)

Thus, on the basis of existing information, conjugate additions of lithio cuprates to α , β -unsaturated ketones and esters involve an initially reversible copper(I)–olefin/lithium–oxygen association to form **19**, which is stable at very

low temperatures (Scheme 2). Formation of 19 is favored in poor donor solvents and by the absence of donor ligands. (66, 67) Warming leads to another intermediate, likely to be a fleeting β -carbon-bonded Cu(III) species 20, which then undergoes reductive elimination. A carbocupration step to afford species 21 is a reasonable alternative along the reaction coordinate, since rapid migration of copper to oxygen (21 ® 22, M = CuR) cannot as yet be unambiguously ruled out. (81) This pathway is given further credence by the surprising results obtained from reactions of dimethylcopperlithium with chiral vinyloxazolidine 23, which contains an unactivated double bond. (82, 83) The stereoselectivities observed (as a function of solvent, time, and temperature) are best accommodated by an initial carbometalation. Moreover, it is well established that α -acetylenic ketones, (84) esters and acids, (85-87) as well as α -allenic carbonyl systems, (88) follow this more classical organometallic insertion route. Such is also the case with related sulfoxides, 89a sulfones, 89a and phosphine oxides. 89b,90 Mechanistic details for carbocuprations of isolated triple bonds are even more sketchy. (91)

Scheme 2.

3. Scope and Limitations

3.1. Grignard-Derived Organocopper Reagents

3.1.1. Copper-Catalyzed Reactions of RMgX

3.1.1.1. Substitution

The pros and cons of using Grignard reagents alone as organometallic components in displacement reactions have been known for some time. (92) In general, a Grignard reagent is not likely to afford coupling products in synthetically useful yields, although there are some exceptions (e.g., allylic and benzylic systems). (92) While the prognosis can be significantly improved when these reactions are run in the presence of catalytic amounts of transition metals (93-95) (e.g., Ni, (94) Pd, (95) Fe (96)), copper(I) salts have found by far the most widespread use in this capacity. One highly valued precursor, Li_2CuCl_4 , (9, 96) in quantities oftentimes less than 1 mole percent, is quite effective in cross couplings of a Grignard reagent with alkyl halides and tosylates. These reactions encounter competing disproportionation processes when applied to less reactive secondary and especially tertiary halides. Several other electrophiles (E^{+}) are also amenable, including acid halides, epoxides, and β -lactones. Allylic leaving groups allow for particularly valuable $S_N 2'$ reactions, while propargylic configurations offer excellent inroads to allenic systems (Eq. 13).

The attraction to Grignard-based substitution methodology is certainly in part due to the availability of most Grignard reagents. Moreover, the need for only catalytic amounts of copper(I) halides adds substantially to the merits of this technology from the fiscal perspective. Primary, secondary, and tertiary Grignard reagents, under the influence of a copper(I) halide, show strong tendencies to react at the carbon bearing the original halide, while propargylic and allylic Grignard reagents may couple at either terminus. Vinylic Grignard reagents are available in high isomer purities by way of carbocupration of acetylenes (Table III), and their subsequent displacement reactions occur with retention of double-bond geometry. Hence, various olefins of well-defined stereochemistry are accessible by way of this chemistry. Many examples of Grignard-based reactions are listed in Tables I, II, and III, addressing catalytic processes, stoichiometric displacements and 1,4 additions, and carbocuprations, respectively.

3.1.1.1.1. Alkyl Halides and Sulfonates

With regard to displacement at sp^3 -based centers bearing halogen, essentially all uses rely on the greater reactivity of bromides and especially iodides relative to the far more sluggish chlorides (Table 1A). Generally speaking, couplings tend to be consistently more effective using stoichiometric rather than catalytic amounts of a copper(I) halide. However, the advent of the soluble catalyst Li₂CuCl₄ has generated a resurgence of interest in this catalytic mode of carbon–carbon bond construction. (9, 96) Several features of this process are noteworthy. Selective couplings with substrates possessing multiple electrophilic sites have been achieved. Thus α , ω -dibromides react with 1 equivalent of a Grignard reagent to give

monosubstituted products (Eq. 14). With α , β -dibromides, however, the reaction fails because of favorable β elimination. (97) Alkyl iodides in bifunctional molecules containing an aryl halide (e.g., *p*-Br group) react at the primary aliphatic center. (98) A methylene group containing both halide and an organometallic residue (e.g., R₃Sn -) is also quite reactive. (99) With 2 or more equivalents of Grignard reagent, double displacements take place. (100)

Certain functional groups can be tolerated within the substrate. Esters, (98, 101) acids, (102, 103) and nitriles (98) are relatively inert, and lead to selective couplings (Eqs. 15–17). A high-yield route to deuterium-labeled materials involves treatment of an ω -bromo acid with a labeled Grignard reagent which gives,

$$I \xrightarrow{CO_2CH_3^+} \overbrace{MgCl} \xrightarrow{3\% \text{Li}_2\text{CuCl}_4} \overbrace{CO_2CH_3} (16)$$

$$n - C_9H_{19}\text{CD}_2\text{MgBr} + \text{Br}(\text{CH}_2)_5\text{CO}_2\text{MgCl} \xrightarrow{0.2\% \text{Li}_2\text{CuCl}_4} \underbrace{\text{THF}}$$

n-C₉H₁₉CD₂(CH₂)₅CO₂H (94%) (17)

for example, $7,7-d_2$ -palmitic acid in excellent yield (Eq. 17). (102) Similar couplings occur between deuterated tosylates and Grignard reagents. (104)

Grignard/catalytic CuX substitutions of 1,2-halohydrins provide interesting outcomes. In contrast to ethylene bromohydrin, (101) substituted halohydrins give mixtures of products, accounted for in Scheme 3. (105) The product distribution (24:25:26) depends upon the nature of X (Cl, Br, I), as well as on R MgX. While alkyl Grignard reagents are less regioselective, vinyl, allyl, or phenyl Grignard reagents predominantly afford isomer 25, (105) the formal product of direct substitution. Propargyl Grignard reagents produce ca. 20% of the corresponding allenyl adducts of ring opening. (105) Crotyl reagents react at the more-substituted carbon with >80% regioselectivity. (105) Extreme departures from this generalization have been noted with alkyl halides, as in Eq. 18. (106)

$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\$$

Scheme 3.

3.1.1.1.2. Vinyl/Aryl Halides

Copper-catalyzed Grignard additions to sp^2 carbons are not facile. Substitutions of vinyl halides are better achieved through nickel-catalyzed (94) or palladium-catalyzed (95) reactions or by stoichiometric organocopper reagents (vide infra). Nevertheless, Li₂CuCl₄-catalyzed substitution of a vinyl iodide occurs with retention of olefin geometry (Eq. 19). (107)

This transformation is limited, however, to alkyl or allylic Grignard reagents, and even in these cases significant amounts of alkene (from metal–halogen exchange) are also obtained.

Copper-catalyzed substitutions of aryl halides by Grignard reagents likewise are not synthetically useful. Again, nickel (94) and palladium (95) catalysts, as with vinyl halides, are far superior in this respect. However, in one reaction, the use of Li_2CuCl_4 allows substitution, albeit in moderate yield (Eq. 20). (98)

More examples of copper-catalyzed substitution reactions are listed in Table I-A.

3.1.1.1.3. Epoxides

Ring opening of epoxides can be achieved on occasion with Grignard reagents alone; however, complications may arise due to either the Lewis acidity or basicity of the reagent. (108, 109) These problems can be remedied to a

significant degree by using catalytic amounts of copper(I) salts (Eq. 21). (110, 111)

Monosubstituted epoxides give better yields with good regioselectivity (attack at the less-hindered site) with alkyl Grignard reagents/catalytic copper(I), whereas vinyl, benzyl, or aryl Grignard reagents give comparable yields with or without copper catalysts. (110, 111) Unlike crotyl Grignard reagents (cf. Eq. 18), prenyl Grignard reagents react with epoxides (Eq. 22) exclusively at their primary positions (a attack), (111) presumably due to both stereoelectronic

and steric effects. Reactions with disubstituted epoxides are slow, but afford the *trans* alcohol stereospecifically. (110) Oxetane can also be cleaved by Grignard reagents in the presence of 10% CuX, although longer reaction times are required. (110) Care must be taken as to the quality of the Grignard reagent and the copper(I) salt, since many byproducts are formed when less pure reagents are used. (112, 113)

See Table I-C for additional examples.

3.1.1.1.4. Allylic Substrates

Nucleophilic displacements by Grignard reagents themselves at allylic carbons usually lead to both normal (S_N2) and rearranged (S_N2 ') products. (92, 114) Although a catalytic amount of a copper(I) salt is likely to increase the overall yields of these reactions, the regioselectivity depends upon several parameters, including the nature of the Grignard reagent, the copper salt, and steric effects in both substrate and reagent (see Table I-B).

Through an extensive study of alkylation of allylic carboxylates, it has recently been concluded that such reactions are more efficient, both in terms of yield and regiochemistry, if the Grignard reagent/catalytic CuX system is used. With alkyl Grignard reagents, the regioselectivity of alkylation is principally governed by the nature of the copper salt: whereas copper(I) halides produce a mixture

of both α and γ alkylated products, copper(I) cyanide affords exclusive γ alkylation (Eq. 23). 62a This pattern holds as well for acyclic

systems, as long as an alkyl Grignard reagent is involved. For example, an α -methylcinnamyl pivalate derivative affords 98% γ alkylation using *n*-butylmagnesium bromide/1% copper(I) cyanide (Eq. 24), even though this system is thermodynamically biased to form the α adduct so as to maintain styryl conjugation.

These results are in striking contrast to those obtained from stoichiometric copper reagents (both lithium and magnesium *homo*cuprates). The mixed lower-order cyanocuprate BuCu(CN)MgBr has been proposed as the reactive species in the catalytic processes described above, 62a although the presence of a higher-order reagent [Bu₂Cu(CN)(MgBr)₂] was not ruled out. What remains puzzling at this time though is that aryl or vinyl Grignard reagents, even in the presence of copper(I) cyanide, show poor regioselectivity in unbiased systems. 62a A further point of interest is that with butylmagnesium bromide, alkylations of both cyclic and acyclic pivalates are highly stereoselective, if not stereospecific. Thus, 1% copper(I) cyanide is sufficient to direct the alkylation to the γ position with 98% *anti* stereoselectivity. 62b On

the other hand, 1% copper(I) chloride effects α alkylation (S_N2 displacement) with inversion of configuration. 62b

An interesting variation of an S_N2' reaction on allylic carboxylates is the use of allylic lactones 27–29 as substrates. Copper-catalyzed Grignard additions to these substrates occur exclusively at the vinyl terminus. Reaction of 27 (R = CH₃) with a prenyl or geranyl Grignard reagent containing copper(I) iodide paved the way for the syntheses of homoterpenoic acids, (115) although better yields could be obtained using homocuprates. These additions appear to be general, as vinyl lactones 27 (R = H), (116) 28, (117) and 29 (117) are excellent precursors to alkenoic acids 30 of predominantly *E* configuration.

Allylic sulfones have also been extensively studied. (118) Reactions of this class of substrate with Grignard reagents in the presence of 1% copper(II) acetylacetonate are highly susceptible to steric congestion in the allylic fragment. Thus hexylmagnesium bromide attacks exclusively the less-hindered positions indicated in **31** and **32**. (118) The yields of these reactions depend upon both solvent (tetrahydrofuran better than ether) and substrate; α -unsubstituted allylic sulfones produce poorer yields because of competing α metalation. Therefore, a higher percentage of the catalyst (10%) is required to obtain acceptable results. (118) On the other hand, yields in excess of 80% are achieved when allyl phenyl sulfones are coupled with Grignard reagents using 5% copper(II) chloride-triphenylphosphine (1:1). (119)

 α -Unsubstituted allylic phosphates undergo exclusive S_N2 displacement with a variety of Grignard reagents (alkyl, alkenyl, aryl) containing 5% copper(I) bromide. (120) An α -methyl substituent, however, shifts the regiochemistry of alkylation toward γ attack ($\gamma : \alpha = 9:1$), (121) an observation elegantly exploited in the synthesis of the sex pheromone of the African Monarch butterfly. (121)

Copper-catalyzed Grignard additions to allylic acetals and allylic ethers have been studied. In the former reaction, (122) irrespective of the substitution pattern, complete allylic transposition occurs. Reactions with acyclic allylic ethers are more susceptible to steric effects, and the Grignard reagent is delivered to the less-substituted end of the allylic system. (123) Cyclic allyl ethers give interesting stereochemical information on these displacement reactions (Scheme 4). (124) The reactions of *cis*-33 and *trans*-36 are five times slower than those of *cis*-36 and *trans*-33. In the former two reactions, steric hindrance forces the methoxy group to adopt a pseudoequatorial position, whereas in the others the methoxy group can comfortably occupy a pseudoaxial configuration. Thus it appears that a pseudoorthogonal relationship between the π system and the nucleofuge is essential for success, further illustrated by the examples in Eq. 25. (124)

Scheme 4.

Allylic ethers with a phenyl substituent, however, undergo extensive hydrogenolysis when treated with ethylmagnesium bromide and 10% copper(I) bromide, the ratio of products varying as a function of solvent and reaction temperature (Eq. 26). (125, 126)

Alkenyl oxiranes undergo predominant $S_N 2'$ substitution with organocopper

reagents. (127) A copper-catalyzed Grignard reaction of this type is synthetically quite appealing in view of the high *E*/*Z* ratio of products obtained, reflecting a preferential s-*trans* over s-*cis* transition state (Eq. 27). Insofar as allylic systems are concerned, therefore, leaving group aptitude falls off in the order ArSO₂ > OAc > CI π OR, (118) with allylic epoxides representing a special class of ethers showing increased reactivity because of ring strain.

3.1.1.1.5. Propargylic Systems

A formal 1,3 displacement (S_N2' mode) of a leaving group on a propargylic carbon would give rise to an allene. Organocopper reagents are especially efficient tools for allene formation from propargylic ethers and sulfonates (Table I-D). Although use of stoichiometric copper(I) is more common in this type of transformation, a few examples exist in the literature where Grignard reagents are used together with catalytic amounts of copper(I) salts.

The overall process involving propargyl ethers as substrates to generate allenes is one which effects *anti* substitution (Eq. 28). (128, 129) Related materials of defined stereochemistry have been examined (128, 129) and the optical yields of

$$\begin{array}{c} \text{OCH}_{3} \\ \text{RCHC} \equiv \text{CH} & \xrightarrow{\text{R'MgX}} \\ \text{RCHC} \equiv \text{CH} & \xrightarrow{\text{R'MgX}} \\ \text{RCHC} \equiv \text{CH}_{3}, \text{ R'} = n\text{-}\text{C}_{6}\text{H}_{13} \\ \text{[R, R'} = \text{C}_{4}\text{H}_{9}\text{-}n] \\ \text{[R, R'} = \text{C}_{4}\text{H}_{9}\text{-}n] \\ \text{(100\%)} \end{array}$$
(28)

the resulting allenes used as indicators for mechanistic considerations. Initially, low optical yields (ca. 16%) were obtained, (128) although in light of the known propensity of allenes to racemize in the presence of organocopper species, (35) the results remained inconclusive. It was later shown (129) that not only can the racemization be minimized if phosphine ligands are added, but also that a *syn* carbocupration precedes the 1,2-elimination step (Scheme 5). (129) **Scheme 5**.

Quenching of intermediate **37** at -40° gives the corresponding allyl ether of strictly *E* stereochemistry. More difficult to explain is the outcome when *n*-butylmagnesium chloride (as opposed to the corresponding bromide or iodide) is used, as only *syn* elimination occurs to give the overall *syn* substitution product, perhaps via the vinyl Grignard reagent (**37**, *M* = MgCl) rather than a vinylcopper intermediate (**37**, *M* = Cu·MgBrX).

From the synthetic point of view, these allene-forming reactions can be used to prepare allenic amines, some (38) (130) of which are known inhibitors of mitochondrial monoamine oxidase. Various 1,2,4,6-tetraenes (39) have

also been synthesized for purposes of subsequent cyclizations to vinylcyclopentenones. (131, 132) Other propargylic substrates, including tosylates, (133, 134) epoxides, (127) acetals, (135, 136) β -propiolactones, (137) and methanesulfonates, (128) undergo couplings via the catalytic CuX/Grignard system. The sulfonyl leaving group has been employed to produce chiral allenes. (128) Choice of reaction parameters can be crucial here, since in tetrahydrofuran (but not ether), propargylic substrates may be reduced by mixtures of RMgX–catalytic CuX. (128, 138)

3.1.1.1.6. Substitution Reactions of Other Substrates

Copper(I)-catalyzed substitution reactions of allenyl ethers with Grignard reagents also produce alkynes via an apparent 1,3-substitution reaction. (139) *N*-Acylpyridinium salts are attacked exclusively at the 4 position when copper(I) salts are used with Grignard reagents. (140, 141) Both nitrosobenzene (142) and carbon disulfide (142) also react. While acid chlorides are converted to ketones under catalytic conditions, (143-145) stoichiometric organocopper reagents give better yields.

See Table I-E for related examples.

3.1.1.2. Carbocupration

Additions across an acetylene triple bond can be effected with a Grignard reagent alone, but require forcing conditions. Catalytic amounts of copper(I) salts allow for milder conditions and routinely afford products of *syn* addition (Eq. 29). (139) With propargyl alcohols, however, the

$$C_{6}H_{5}C \equiv CCH_{2}N(C_{2}H_{5})_{2} + RMgBr \xrightarrow{5\% CuBr}_{Et_{2}O, 20^{\circ}} \overset{C_{6}H_{5}}{R} \overset{CH_{2}N(C_{2}H_{5})_{2}}_{H}$$
 (29)

addition takes place in an *anti* fashion because of formation of a cyclic intermediate **40** (Eq. 30). (146, 147) This pattern is followed by Grignard reagents, irrespective of the presence of copper(I) salts.

An interesting variation of this carbometalation process concerns the copper-catalyzed addition of allyl magnesium bromide across the dianion of propargyl alcohol leading ultimately to (labeled) cyclic allylic alcohols (Scheme 6). (148)

Scheme 6.

Acetylene itself can be carbometalated with Grignard reagents in the presence of Cu(I); however, the reaction stops after ca. 40% completion. (149) Stoichiometric copper reagents, on the other hand, effect carbocupration with ease and excellent selectivity.

3.1.1.3. Conjugate Additions

Copper-catalyzed additions of Grignard reagents to α , β -unsaturated ketones were first shown to occur in a 1,4 fashion in 1941. (150) The advent of stoichiometric copper reagents, because of their coupling efficiency and lower basicity, has diverted attention somewhat from the use of Grignard reagents in this context. Where permitted in terms of functionality present in the educt, however, the catalytic CuX/Grignard reagent approach is often a popular first choice (see Table I-F).

1,4 Additions of acetal-containing Grignard reagents with catalytic CuX and dimethyl sulfide (DMS) form the basis of a novel annulation process (Scheme 7). (143-145) By varying the chain length in the Grignard reagent, annulation of cyclic enones with either five- (n = 1), six- (n = 2), or seven-membered (n = 3) rings can be realized. The sequence can be executed in one pot with yields ranging from 40–80%.

2-Acetamidoacrylic esters participate in copper-catalyzed additions of Grignard reagents (Eq. 31). (151) The conjugate addition is facile, and the intermediate carbanion can be trapped with methyl iodide to give α -substituted

amino acid derivatives. The reaction is somewhat medium-dependent, with best results (60–80% yields) obtained in mixed solvents (tetrahydrofuran–ether–benzene). Interestingly, lower-order lithio cuprates (R₂CuLi) give either no 1,4 addition or complex product mixtures. (151)

Intramolecular trapping of an incipient enolate by an internal electrophile, following a copper-catalyzed Grignard addition to an enone, can provide rapid access to elaborated carbon frameworks. This concept has been applied to a quick entry into the gibberellic acid skeleton (Eq. 32). (152)

Copper-catalyzed conjugate additions to an enoate prepared from a carbohydrate precursor lead to interesting stereoselectivity. Thus starting with a pure diisopropylidene D-*arabino* enoate, reactions of phenyl and *tert*-butyl Grignard reagents give 1,4-addition products of strictly D-*manno* configuration. (153)

Surprisingly, isopropylmagnesium bromide produces the D-*gluco* isomer, while the reaction with cyclohexyl Grignard is nonselective (Eq. 33). (153) Similar stereoselectivity is also evident in a cyclic system, where the approach of the Grignard reagent is directed to the face away from the ethoxy group at the anomeric center (Eq. 34). (154)

Addition-eliminations in β -chlorocinnamates can be highly stereoselective in copper-catalyzed Grignard reactions, depending upon the stereochemistry of the starting ester. (155) The *Z* isomer reacts with retention of configuration, whereas reaction of the corresponding *E* isomer shows no stereochemical preference. (155)

Benzyl Grignard reagents add to dienones in a 1,6 sense when combined with 1% copper(I) bromide dimethyl sulfide (Eq. 35). (156) Only minor amounts of 1,2 and 1,4 adducts are observed. Without copper catalysts, however, these become the major products.

The value of the catalytic CuX/Grignard reagent mixture for inducing Michael reactions has been boosted significantly by the recent finding that chlorotrimethylsilane/hexamethylphosphoric triamide (HMPA) in THF leads to highly accelerated additions (Eq. 36). (157) Silyl enol ethers can be made from α , β -unsaturated aldehydes with excellent control of olefin geometry. (157) Thus,

both (*E*) and (*Z*) enol silyl ethers of a particular aldehyde are available by this method (Scheme 8). (157)

A very recent and promising development for effecting chiral induction in conjugate additions involves prior complexation of RCu with a catalytic amount of a novel nonracemic, lithiated aminotroponimine (AMT) to form **41** in situ. Simultaneous addition of tetrahydrofuran solutions of *n*-butylmagnesium chloride (25 equivalents) and cyclohexenone at –78° over a 5-minute period leads to the conjugate adduct (Eq. 37). 158a Although the reported ee is low, further refinements in the catalyst system increase the chiral efficiency of the coupling substantially. 158b

3.1.2. Stoichiometric Cuprate Reactions

3.1.2.1. Substitution

Displacement reactions by cuprates formed in situ from (usually) an excess of a Grignard reagent and a catalytic quantity of a copper(I) halide or Li₂CuCl₄ can often result in quite satisfactory yields of products with newly formed carbon-carbon bonds. Hence, relatively few examples have materialized 0.5 equivalent of copper(I) halide is called for in reactions at either sp^3 where or sp^2 carbon centers (see Table II-D). Couplings with acetylenic halides, however, are best performed with $RCu MgX_2$ to obtain good yields (60–80%) of disubstituted alkynes. (159) Conjugated enynes are now available via a streamlined route involving coupling between vinyl-copper reagents and alkynyl bromides/iodides (159) or alkynyliodonium tosylates. (160) Carbocupration of a terminal acetylene with RCu, which affords the requisite neutral organometallic 42a, reacts with phenylalkynyliodonium tosylate to give product **42b** with virtually complete control of double-bond geometry. (160) Especially noteworthy is the opportunity for choosing the resulting olefin stereochemistry (compare 42b and 42c) simply by reversing the order in which the alkylcopper is added to the alkyne. (160) This new method nicely complements the alternative palladium-catalyzed procedures (161) as a route to this functionality.

Stoichiometric CuX/Grignard reagent is often applied to reactions of carbonyl-containing

substrates, notably with acid halides (see Table II-A). Even highly hindered acid chlorides can be transformed to diversely substituted

$$\begin{array}{c} R^{1} \\ R^{2} - C - COCl \\ R^{3} \\ R^{3} \end{array} \xrightarrow{R^{4} MgX, CuCl (1 eq)}{Et_{2}O, -5^{\circ} to \ 0^{\circ}} \qquad R^{2} - C - COR^{4} \\ R^{3} \\ (70-90\%) \end{array}$$
(38)

ketones using 1 equivalent each of CuCl and a Grignard reagent (Eq. 38). (162) Likewise, mixed cuprates [e.g., R(CH₃)CuMgBr] prepared from methylcopper and RMgBr, efficiently transfer the Grignard-derived organic ligand to acid chlorides to form ketones in high yields. (163) The methyl group is the most effective nontransferrable ligand compared with thiophenyl, *tert*-butoxy, or 3,3-dimethylbutynyl groups. (163)

Thiocarbonyl compounds, such as carbon disulfide (142) and dithioesters, (164) are susceptible to exclusive carbophilic attack by Grignard-derived organocopper or cuprate reagents. By contrast, Grignard reagents alone normally follow a thiophilic pathway. (165)

While nucleophilic ring opening of β -propiolactones *en route* to β -substituted

propionic acids is conveniently carried out under catalytic CuX/Grignard conditions, (166, 167) vinylic and especially allylic Grignards give unsatisfactory results. In fact, allylic Grignards attack the carbonyl group of the lactone, and virtually no β substitution is observed under copper-catalyzed conditions. (167) On the other hand, the use of diallylmagnesium cuprates, formed from allyl Grignards and 0.5 equivalent of copper(I) salts, provide 56–62% of the desired β -substituted products. (167, 168) Similarly, divinylmagnesium cuprates give better yields (85%) as compared to those realized (59%) via the catalytic mode. (167, 168) Magnesium cuprates appear to be superior to lithium cuprates in ring-opening reactions of β -propiolactones (Eq. 39). (168)

3.1.2.1.1. Allylic Substrates

Although most allylic substitutions by Grignard reagents are copper catalyzed, a number of workers have utilized stoichiometric amounts of copper salts for these purposes (see Table II-B). Magnesio cuprates (R_2CuMgX) displace allylic pivalates in a highly regioselective fashion with predominant formation of S_N2' products. (169) Lithium cuprates show complementary behavior in forming the product of direct displacement (S_N2) from the same substrates. (169) Displacement reactions on allylic pivalates fail, however, when exposed to RCu·MgX₂, an observation attributed to the relatively insoluble nature of many RCu species. (62) On the other hand, equimolar mixtures of a Grignard reagent and copper(I) cyanide are quite efficient owing to the lack of metathesis with this salt, (62) thereby generating a more reactive mixed cuprate of the type RCu(CN)MgBr.

Benzothiazol-2-yl allyl ethers constitute an allylic system with a leaving group possessing sites of potential coordination. Organocopper reactions with this system are highly regioselective (98:2). giving rise to S_N2' products (Eq.

40). (170, 171) Moreover, these displacements appear to be independent of steric demands of the substituents on the allyl framework. The product olefins are obtained exclusively as the *E* isomers, underscoring this stereochemically controlled pathway. 171a However, there are exceptions, as with the crotyl ether derivative **43**. Factors such as substrate–copper salt contact time play a prominent role in controlling the percentages of products **44a** and **44b**. Short exposure times prior to addition of the Grignard reagent lead exclusively to the $S_N 2'$ product **44a**. Longer periods of aging (6 hours) prior to addition of the Grignard reagent afford the $S_N 2$ adduct **44b** predominantly (95% **44b**:5% **44a**). This anomaly has been rationalized by invoking two different intermediates,

45a and **45b**, for the two sets of reaction conditions, respectively. In the former, the readily derived RCu forms a π complex with the substrate, and proximity-induced delivery of the "R" residue gives the S_N2 product. Alternatively, if **43** and copper(I) bromide are allowed sufficient time to interact, complex **45b** is formed and is attacked by the Grignard reagent at the less-hindered α site. Complexes of type **45b** have been independently synthesized, 171b and their reactions with Grignard reagents do indeed give S_N2 products, thus adding credence to these hypotheses. **171a**

Benzothiazol-2-yl allyl thioethers are also well-behaved substrates. The S_N2' products are likewise exclusively obtained from an intermediate similar to **45a**. 172a However, this reaction is solvent dependent, with ether favoring the S_N2' pathway, whereas tetrahydrofuran encourages S_N2 delivery. Placement of a carboalkoxy group on the double bond, as in a γ

-(benzo-thiazol-2-thio)-substituted α , β -enoate (Eq. 41), does not direct RCu·MgX₂ toward 1,4 addition, this pathway being completely overridden by the 1,3-displacement mode. 172b

$$N = S + CO_2C_2H_5 \xrightarrow{n-C_4H_9MgBr}_{THF, -15^{\circ}} \xrightarrow{n-C_4H_9}_{C_2H_5O_2C} CH_2$$
(41)
(85%)

Allylic acetates are among the least useful substrates for reactions with catalytically formed organocopper reagents, the main drawback being competing attack at the carbonyl center. (62, 169) However, an equimolar mixture of Grignard reagent and LiCuBr₂ [prepared from lithium bromide and copper(I) bromide]

effectively reacts with allylic diacetates to give monosubstituted products of the $S_N 2'$ variety exclusively when run in tetrahydrofuran (Eq. 42). (173) Use of a medium rich in ether leads to a mixture of $S_N 2$ and $S_N 2$ isomers.

As with copper-catalyzed Grignard additions to β -vinyl- β -propiolactones, diorganomagnesium cuprates react readily to give good yields of 3-alkenoic acids, predominantly with *E* stereochemistry (Eq. 43). (115, 116) With allylic Grignards as precursors, however, synthetically useful yields are obtained only

with diallylmagnesium cuprates. (115, 116) This methodology has been utilized to prepare homoterpenoic acids **46** and **47**. (116)

Allylic displacements can also be carried out on γ -vinyl- γ -butyrolactone and δ -vinyl- δ -valerolactone, (117) using R₂CuMgX. A simple synthesis of the tridecadienyl acetate **48**, the sex pheromone of *phthorimaea operculella*, relies on vinylcopper addition to the electrophilic β position of a vinylbutyrolactone. (117) The vinyl appendage may also be contained within a ring, as found for the RCu·MgBr₂-mediated opening of cyclopentafuranones, **49**. These S_N2'

additions are both highly regio- and stereoselective, irrespective of the substitution pattern in the substrate. (174) Products reflect the normal preponderance of *anti* opening, (62) and thus are formed in a virtually pure stereoisomeric state. (174) Such is not the case in reactions of **49**, when either catalytic quantities of copper(I) salts are used, or lithium cuprates replace this stoichiometric Grignard reagent-based methodology.

In sharp contrast to the typical *anti* $S_N 2'$ attack found in rigid cycloalkene epoxides, the more flexible 10-, 12-, and 14-membered cycloalkylidene oxiranes are susceptible to *syn* $S_N 2'$ opening with RCu·MgX₂. (175) Stereoselectivities ranging from 9:1 to 99:1 are observed, with the smaller ring size (10 carbons) displaying the strongest preference for *syn* approach (Eq. 44).

Allylic substitution with Grignard reagents and 1 equivalent of a copper salt can be extended to compounds in which the double bond is part of a cumulene. The product dienes **51**, formed from consumption of α -allenic methanesulfinates **50**, can be hydrolyzed with ease to give α , β -unsaturated ketones **52**. (176) It is essential here that RCu·MgX₂ be used, since cuprate reagents attack at sulfur. Addition of lithium bromide (1 equivalent) to copper(I) bromide, prior to introduction of RMgX, also has a beneficial effect on the yield and reaction rate. (176)

Formal 1,3 substitution is also reported for several other allenic and cumulenic systems (Table II-B), including as examples acetylenic derivative **53**, (177) the iodomethoxypropadiene **54** [in the presence of dimethyl sulfoxide (DMSO) and tetramethylethylenediamine (TMEDA)], (178) and the methoxybutatriene **55**. (179, 180)

3.1.2.1.2. Propargylic Substrates

Acetylene derivatives with a leaving group at the propargylic center react with Grignard-derived organocopper reagents to produce allenes (see Table II-C). This scheme represents one of the most versatile routes to allenes of predictable geometry. Several leaving groups can be used for such purposes, namely tosylates, (134, 181) acetates, (182) and methanesulfinates. (183, 184) The organocopper component is usually RCu·MgX₂, with or without added lithium bromide. (185) As with cumulenes, magnesio cuprates are not commonly used here, especially with methanesulfinates, for which predominant attack at sulfur is observed. (186)

Factors affecting the reactions of propargylic substrates with organocopper species have been examined in some detail. (182) Two major displacement products can be envisioned, depending upon regiochemical biases (Eq. 45). When

$$HC \equiv CCH_2X + "RCu" \longrightarrow HC \equiv CCH_2R \text{ and / or } RCH = C = CH_2$$

$$[X = OTs, O_2CCH_3, OCO_2CH_3, OSOCH_3]$$
(45)

either R₂CuMgBr or RCu·MgX₂ is used, irrespective of solvent (ether or tetrahydrofuran) and substitution pattern of the substrate, mixtures of a -substituted acetylenes and allenes are formed, with the former predominating. However, when the copper reagent is derived from an equimolar mixture of a Grignard reagent and copper(I) bromide·lithium bromide complex, and the reaction performed in tetrahydrofuran, near-exclusive formation of the allene is observed. Remarkably, there is no reaction in ether. This highly regioselective

pathway is not hampered by the presence of substituents at the acetylenic terminus and is followed irrespective of the departing moiety (e.g., acetate, carbonate, or tosylate). (182) This dramatic impact of lithium bromide on the reactivity patterns of organocopper reagents derived from Grignard reagents (185) (but not to the same extent on lithium cuprates (187)) has been applied to propargylic displacement reactions and carbocuprations.

The use of methanesulfinate as a leaving group, together with the copper(I) bromide·lithium bromide complex as the source of copper(I), has eliminated most of the potential complications associated with Grignard reactions with propargylic substrates. The advantages of the methanesulfinates include higher yields, ease of preparation, and virtually complete regiochemical control (1,3 addition). For example, methanesulfinates **56** and **57** react to afford high yields of allenic alcohols (188) and trimethylsilylallenes, (183) respectively (Eqs.

Symmetrically substituted 1,3-dienes are produced in good yields from bis(sulfinate) **58**. (29) The reaction of **58** with 2 equivalents of RCu·MgX₂·LiBr cannot be stopped after the first substitution and hence loses its potential for introduction of two different R groups in a one-pot operation. The problem can be somewhat mitigated by using a preformed methanesulfinate from an α -allenic alcohol, (188) and this strategy has been exploited in a short synthesis of myrcene (**59**). (29)

The regiochemistry of Grignard attack on 2,4-pentadiynyl methanesulfinates **60** in the presence of LiCuBr₂ depends upon both steric effects in the substrate and the Grignard reagent-derived organocopper species. (184) Thus when R¹ is hydrogen, attack is regiorandom, and both allenyne **61** and pentatetraene **62** are formed. However, when R¹ is a bulkier methyl or trimethylsilyl group, steric effects direct organocopper attack in a 1,3 sense, giving rise to **61** with >95% selectivity. On the other hand, if R² and R³ are bulky groups, then 1,5 attack to afford **62** is favored for hindered copper species. (184)

Geometrically pure butatrienes are obtained by the reactions of 3-bromo-3-alken-1-ynes with LiCuBr₂-modified Grignard reagents. Although the reaction occurs with complete retention of the substrate configuration in

the product, it is limited to the use of secondary and tertiary Grignard reagents (Eq. 49). (190)

Vinylallenes, which are useful precursors to cyclopentanones, can be readily prepared by organocopper displacements from propargylic substrates (Eq. 50). (134, 181)

Organocopper-induced 1,3 substitution of acyclic propargylic systems takes place exclusively in an *anti* fashion. Optically active allenes have been synthesized from chiral precursor propargylic methanesulfinates, (191) taking advantage of the stereospecificity of these couplings. With poorer leaving groups such as methoxy, an initial *syn* carbocupration followed by *anti* elimination has been proposed (Eq. 51); the overall process, however, is still tantamount to *anti* addition. (135)

Akin to acyclic propargylic systems, the methanesulfinates derived from both epimers of 17-ethynyl-17-hydroxyestrone undergo 1,3-substitution exclusively in the *anti* mode, illustrated for the α epimer **63**. (186, 192)

3.1.2.2. Carbocupration

Carbometalations of alkynes using stoichiometric organocopper or cuprate reagents offer a powerful tool for preparing olefins with rigidly defined substitution patterns. (193) The addition of both carbon and copper atoms across an acetylene, which occurs in a strictly *syn* Markovnikov sense, (194) creates a new alkenylcopper species that can subsequently be replaced by reaction with an appropriate electrophile E^+ (Eq. 52). This process can be particularly valuable in syntheses of insect sex pheromones, where bioactivity can be critically dependent upon alkene isomeric purity. A recent

review deals with carbocupration chemistry in some detail (see also Table III). 4f Initial research on carbocupration was limited to the basic process itself (i.e., Eq. 52, $E^+ = H^+$), with variations on the part of substrate, alkyne, and Grignard reagent. With alkyl-substituted acetylenes, the usual mode of organocopper addition is observed (*syn*, Markovnikov). Opportunities for chelation in the resulting vinyl organometallic via placement of a heteroatom (e.g., OR, O⁻, NR₂, SR) in the side chain of the 1-alkyne, however, can dictate the regio- and stereochemistry of the carbocupration. (195) This effect does not extend beyond two carbon–carbon bond lengths (i.e.,

past five-membered ring formation), at which point normal reactivity to give a "branched" vinylcopper is restored. In homopropargylic substrates (Eq. 53, n = 2), the proportion of "linear" adducts increases for the series - OCH₃ < - SC₂H₅ < - N(C₂H₅)₂, (195) an order that parallels the ligating power of these groups for copper. Geometrical orientation is also important in determining the "branched" to "linear" ratio, as illustrated in the cases of *E* and *Z* enynic thioethers **64a,b**. (195) With homopropargylic ethers and acetals,

reactions run in tetrahydrofuran favor the normal mode of addition, while mixtures are usually observed when ether is the solvent. (195) Propargylic substrates (Eq. 53, n = 1) behave akin to their homologs insofar as reactivity profiles and solvent effects are concerned. (196)

An internal acetylene requires a large excess of dialkylmagnesium cuprate in tetrahydrofuran at room temperature to effect carbocupration (vs. –20 to 0° with monosubstituted alkynes). The same reaction in ether follows a completely different course, with cis reduction of the acetylene observed from *syn* addition of a copper hydride species. (197) Internal propargylic alcohols, R'C \equiv CCH₂OH, undergo either *cis* reduction in ether (when R is alkyl) or hydroxy-directed *anti*-Markovnikov addition in ether or tetrahydrofuran (when R is phenyl). (197) Similar hydroxy participation is also known for the copper-catalyzed Grignard addition to propargyl alcohol (vide supra). (139, 145, 198)

Carbocupration of the triple bond in enynes can be effected with R_2CuMgX , (199) and has led to a short synthesis of myrcene (59) (200) (compare with route on page 170). 1,3-Diynes are not regioselective in their carbocupration reactions. (201)

Heteroatom-substituted alkynes, including ynamines (202) and alkoxyacetylenes, (202) react with RCu·MgX₂ in tetrahydrofuran to give the respective heterovinylcoppers. Reverse regiochemistry of addition is observed with alkylthioacetylenes (202) and acetylenic sulfones. (202)

Silylacetylenes provide access to vinylsilanes via carbocupration. (203-205) The regiochemistry of cuprate additions to silylacetylenes is reversed from that to acetylenes, which places the R group from the Grignard reagent beta to silicon (*cf.* **65**). Apparently this is inherent to silicon, and not due to alterations in reaction parameters (e.g., a solvent effect).

Parlaying the initial adducts of carbocupration (vinylcopper complexes) into more highly functionalized olefins now figures prominently in synthetic chemistry. Since molecular elaborations of this sort offer such virtues as single-pot processes and >99% retention of double-bond configuration, a wide range of electrophiles has been enlisted for this purpose (Eq. 54).

$$R^{1}C \equiv CH \quad \frac{RCu \cdot MgBr_{2}}{syn \text{ addition}} \xrightarrow{R^{1}}_{R} \xrightarrow{H} \xrightarrow{H} \xrightarrow{E^{+}}_{retention} \xrightarrow{R^{1}}_{R} \xrightarrow{H} \xrightarrow{H}$$
(54)

Heteroatom groups that have been introduced in this fashion include, as examples, halogens (Cl, Br, I), (206-208) triphenylstannyl, (209) diphenylphosphino, (209) methylthio, (209) and sulfone (210) (see Table III). Chlorotrimethylsilane does not react with vinylcopper species from carbometalations with Grignard reagents, although lithium cuprates, following carbocupration, are smoothly silylated to *cis*-vinylsilanes. (211) Vinylcopper adducts, when treated with ground-state oxygen, are transformed into symmetrical 1,3-dienes with retention of olefin geometry. (208)

Carbon-centered electrophiles are among the most important coupling partners in synthetic transformations with vinylcopper derivatives. The preliminary choice of copper reagent for the carbocupration step has great impact on the efficiency of the secondary process. Thus, having started with $RCu \cdot MgX_2$, vinylcopper 66 is obtained, whereas magnesio cuprates give rise to mixed cuprates of type 67. In the latter reaction, 2 equivalents of electrophile are needed since both groups on copper may be transferred. In fact, in some

reactions (e.g., with 1 equivalent of methyl iodide), only the undesired R group on copper from 67 may react leaving the vinyl group, which presumably is protonated on workup. (209) On the other hand, species 66 are not especially reactive toward common, unactivated alkylating agents, although they do couple with allyl bromide, (208) methyl iodide, (208) isoprene oxide, (127) α -epoxy-alkynes, (127) and γ -vinyl- γ -butyrolactone. (117)

Solutions to these obstacles have been extensively investigated and recommendations have been offered. It is suggested that, if possible, synthetic schemes that bypass 67 should be considered unless the alkylating agent is relatively inexpensive. The alternative route via 66 (X = Br) may be far more effective, since 2 equivalents of hexamethylphosphorous triamide (HMPT) and 3 equivalents of a trialkyl phosphite stabilize 66 to the extent that they have sufficient lifetimes to react with a wide variety of alkyl halides (Scheme 9). (208) Simple alkyl bromides and iodides are most effective, whereas chlorides, ethers, tosylates, and esters are completely inert. Such discrimination on the part of vinylcopper 66 can be advantageous for carrying out selective transformations, as in the preparation of allylic alcohols by this methodology (Eq. 55). (212) *gem*-Alkylthiovinyl coppers, however, are anomalous in their reactions with methyl iodide, and *cis*-butatrienes result, possibly

via alkylation on sulfur, leading to a vinylcarbenoid species which dimerizes (Eq. 56). (213) On the other hand, reactions with allylic halides (rather than CH_3I) produce the expected alkylated products. (213)

The 1,5 disposition of trisubstituted olefins in compounds of natural origin has been recognized as obtainable via alkylation of vinylcopper species with homopropargylic substrates. Unfortunately, this approach has met with little success and can only be reduced to practice through the agency of lithium bromide-complexed mixed vinylcuprates 67, X = Br (Eq. 57). (214) Both HMPT

and trimethyl phosphite are again essential for the displacement, as is an excess (≥2 equivalents) of alkylating agent, otherwise results are disappointing. (191, 214) A better alternative is to first transform the initial vinylcopper in situ to a mixed cuprate 69 by addition of a nontransferrable ligand (such as 1-pentynyl, vide infra) which then reacts with 1 equivalent of a homopropargylic iodide to give 68 in an unoptimized 60% yield (Eq. 58). (215) Enynes 68 can be further extended using the same carbometalation/alkylation strategy, as in the total synthesis of juvenile hormones. (216)

Alkylation of vinylcopper complexes with 1-haloalkynes affords conjugated enynes. (159) The reaction conditions require use of 2 equivalents of TMEDA for reasonable yields. Use of functionalized 1-haloalkynes allows for further manipulation. Use of the trimethylsilyl-protected 1-bromopropargyl alcohol **70** provides a streamlined route to bombykol (**71**) (Eq. 59). (159)

Another well-studied aspect of vinylcopper reagents is their reactions with epoxides. In general, oxiranes are only moderately reactive. (217) However, the use of mixed cuprates such as **69** enhances the reactivity of these copper reagents, and alkylations with epoxides proceed in good yields. (218) Monosubstituted epoxides are regioselectively attacked at the less-hindered carbon, giving rise to homoallylic alcohols, key intermediates in the synthesis of, for example, linear terpenoids (Eq. 60). Styrene oxide, however, gives mixtures of regioisomers, and with the less-reactive cyclohexene oxide the yield decreases to ca. 25%. 218b Another application of vinylcopper alkylation using

 $C_{2}H_{5}Cu \cdot MgBr_{2} + n \cdot C_{6}H_{13}C \equiv CH \xrightarrow{Et_{2}O, DMS}_{-23^{\circ}, 2h} \xrightarrow{C_{2}H_{5}} Cu \cdot MgBr_{2}$ $\frac{1. \quad n \cdot C_{4}H_{9}C \equiv CLi}{2. \quad \bigcirc C_{5}H_{11} \cdot n} \xrightarrow{C_{2}H_{5}}_{n \cdot C_{6}H_{13}} \xrightarrow{C_{1}H_{13}}_{C_{5}H_{11} \cdot n} (60)$ (60)

an epoxide includes a key step in the stereospecific total synthesis of the codling moth constituent **72**. (215)

The enhanced reactivity of mixed cuprates has also found extension to conjugate addition schemes. That is, following carbocupration, the vinylcopper species can be converted to the *ate* complex **69** in situ with a lithiated acetylene, and then reacted with an α , β -unsaturated carbonyl compound. (215, 218) Double-bond geometry is retained in the adduct. (218) The alkenylcopper itself is unreactive (Scheme 10). Scheme 10.

Acylation of vinylcoppers offers a straightforward route to stereodefined α , β -unsaturated carbonyl compounds. Attempts to directly acylate alkenylcopper species give irreproducible results with acid chlorides. (219) Lithium dialkenylcuprates are not useful because of their further 1,4 addition to the product enones. (220) Fortunately, RCu·MgX₂ (R = alkenyl) reacts smoothly with acyl chlorides, or with mixed-acid anhydrides if a catalytic amount of Pd⁰ is present. (221) The original olefin geometry is maintained throughout,

although complete isomerization (from Z to E) of the initially formed enonecan be achieved via dilute acid catalysis. (221) Thus α , β -unsaturated ketones of either E or Z stereochemistry can be prepared with ease (Eq. 61).

 γ -Silylated vinylcopper species **73** have recently been prepared through carbocupration of acetylenes with α -silylated organocopper reagents. (222) Intermediates **73** undergo a variety of further transformations in addition to simple protonolysis to produce allylsilanes 222b (see Table III). Oxidative dimerization

occurs in the presence of Li_2CuCl_4 , and alkylations can be carried out with sp^3 -centered halides. 222c In the presence of Pd⁰ as catalyst, vinyl halides couple to produce highly functionalized dienes in which the stereochemistry of both components is retained (Eq. 62). 222c

More highly functionalized organocopper reagents (e.g., ω -alkoxy-containing derivatives) also participate in carbocupration schemes. 222d Acylation of γ -silylvinylcopper species in the presence of catalytic amounts of Pd⁰ leads to a 1,5-sigmatropic silyl shift in the initially formed γ -silyl- α , β -unsaturated ketone (Eq. 63). 222c The dienol diethers, produced in high stereoisomeric purity, are regioisomeric with those commonly referred to as "Danishefsky's dienes," (223) and hence are promising for applications in Diels–Alder chemistry.

Further useful reactions of vinylcoppers or divinylmagnesio cuprates include carboxylation with carbon dioxide, (215, 224, 226) aminomethylation with aminothioacetals, (225) aminocarbonylation via phenylisocyanate, (226) cyanation with cyanogen chloride, (227) and chain extension with β -propiolactone. (167, 228) Reactions with carbon disulfide involve inversion of olefin configuration to the more stable *E* isomer (Eq. 64). (142)

$$HC \equiv CH + t - C_4 H_9 Cu \cdot MgBr_2 \cdot LiBr \xrightarrow{THF} \begin{bmatrix} t - C_4 H_9 & Cu \cdot MgBr_2 \cdot LiBr \end{bmatrix}$$

$$\frac{1. CS_2, THF}{2. CH_3 I, THF} \quad t - C_4 H_9 CH = CHC(S)SCH_3$$

$$(64)$$

$$98:2 E:Z$$

Certain cumulenes also undergo carbocupration when treated with dialkylmagnesio cuprates. The regiochemistry of attack is highly dependent on both reagent and substrate structure, as well as on reaction conditions. The cumulenes studied so far are methoxypropadiene (**74**), (229) *cis*-1,4-diphenylbutatriene (**75**), (230) and *gem*-disubstituted butatrienes **76**. (231)

3.1.2.3. Conjugate Addition

Although Michael additions of organic ligands delivered with RCu·MgX₂ are less popular than those effected by lower-order cuprates, (232, 233) many examples of these couplings have appeared, most of which are illustrated in Table II-E. While reactions with cyclohexenone proceed in moderate yields (ca. 65%), acyclic enones and cyclopentenone afford inferior results. 218b Acetylenic esters, however, are common acceptors toward RCu·MgX₂, (234) the stereochemical outcomes of which suggest involvement of a carbocupration process. For example, RCu·MgX₂ reacts with dimethylacetylene dicarboxylate in tetrahydrofuran–dimethyl sulfide to give exclusively the 2-substituted maleates from *syn* addition (Eq. 65). (235)

$$CH_{3}O_{2}CC \equiv CCO_{2}CH_{3} \xrightarrow{RMgBr} \xrightarrow{R} \xrightarrow{R} \xrightarrow{H} CH_{3}O_{2}C \xrightarrow{CO_{2}CH_{3}} \xrightarrow{(70-90\%)} (65)$$

$$\begin{cases} R = alkyl, vinyl, phenyl, \\ (CH_{3})_{3}SiCH_{2} \end{cases}$$

One extension of this chemistry involves $RCu \cdot MgX_2$ addition to ω -alkoxycarbonylacetylenic esters to form cyclopentenones (Eq. 66). (236) The initial vinylcopper (via *syn* addition) probably equilibrates with its *anti* isomer, which then undergoes intramolecular acylation. The many examples involving functionalized Grignard reagents suggest good generality to this one-pot procedure, although yields tend to be moderate (35–45%). (236)

Conjugate additions to α , β -ethylenic carbonyl compounds appear to be more efficient when magnesio cuprates (R₂CuMgX) are employed. (233, 237-239) An important achievement in this field is the highly selective 1,4 addition of R₂CuMgCl to α , β -unsaturated aldehydes. (240) Reactions of lithio cuprates with α , β -enals are usually accompanied by products of 1,2 addition. Similarly, addition of *n*-butylmagnesium chloride to α -methylpent-2-enal in the presence of copper(I) bromide alone (0.5 equivalent) gives a 91:9 ratio of adducts in favor of 1,2 addition. (240) However, using the copper(I) bromide-dimethyl sulfide complex in the presence of chlorotrimethylsilane (3 equivalents), the product ratio is dramatically changed to 96:4, now in favor of the 1,4 adduct (Scheme 11). Whether chlorotrimethylsilane is present prior to or after introduction of the substrate does not affect the product distribution. Thus dimethyl sulfide appears to be the critical component responsible for this ratio reversal

Scheme 11.

Also quite significant is that even acrolein, a notoriously poor substrate toward Michael donors, reacts with *n*-butylmagnesium chloride to give exclusively the conjugate addition product when one-half equivalent of copper(I) bromide dimethylsulfide (and chlorotrimethylsilane) is used. Allyl Grignard, however, gives no 1,4 addition under these conditions. (240) In the sequence

of Scheme 11, chlorotrimethylsilane can be omitted and bromine used to trap the incipient enolate, thereby producing a -bromoaldehydes in good yields. (240) Recently it has been shown that use of chlorotrimethylsilane in copper-catalyzed Grignard reactions with enals has a rate-accelerating effect and is not merely stabilizing an initially formed enolate. (157)

The use of homocuprates R₂CuMgX has the particular disadvantage that one of the organic residues R is wasted in the coupling process, since the byproduct RCu is relatively unreactive. Many mixed cuprates such as **77**, which selectively transfer only the desired R_T group (T = transferrable), have been developed. Such mixed cuprates can be prepared by adding 1 equivalent of R_TMgX to an R_RCu (R = residual) species, and selective transfer of R_T from the cuprate to the substrate results in full utilization of the valued Grignard reagent. Several so-called "dummy ligands" (R_R in **77**) have been utilized for this purpose, including thiophenyl, (241, 242) *tert*-butoxy, (243) 1-pentynyl, (244) trimethylsilylethynyl, (245) and methyl groups. (246-250) The efficiency of each dummy ligand is quite variable and depends upon the nature of R_T in

$$R_TMgX + R_RCu \longrightarrow R_TR_RCuMgX \longrightarrow R_T R_RCuMgX + R_RCu$$

the mixed cuprate. With increasing steric requirements between cuprate and educt, the efficiency of selective transfer decreases. (251) For **77**, R_R = methyl, in all cases studied the methyl group is transferred to some extent, but especially so when R_T is allyl or benzyl (Eq. 67). (246, 248)

The mixed-cuprate $R_T(CH_3)CuMgX$ (e.g., $R_T = C_6H_5$) can be prepared either by addition of a Grignard reagent to CH_3Cu or by addition of CH_3MgX to RCu (Eq. 68). The mode of formation notwithstanding, the cuprate ligand which is preferentially transferred to the enone is the one which originates with the Grignard reagent. (248) This signifies that magnesio mixed cuprates, unlike their lithio counterparts, (248) do not rapidly exchange their individual ligands. (248) These observations suggest that mixed magnesio cuprates containing divalent cations as part of the clusters' gegenion may have unique features associated with their structures, and that several factors such as ligand basicity, steric bulk, and/or coordinating ability may be but part of the story behind the selective release of one group over another from copper. (252)

A related study using 5 equivalents of *n*-butyl Grignard and methylcopper on 3-methylcyclohexenone demonstrates that not only does the selectivity of butyl:methyl transfer remain high (98:2), but also only a minor amount (<2%) of 1,2-addition product occurs. (247) With 5 equivalents of both Grignard and substrate, similar yield and selectivity (97% butyl transfer) are observed. This last experiment, albeit indirectly, involves the use of a catalytic amount (20%) of methylcopper, a technique that appears very promising in mixed-cuprate chemistry (Eq. 69). (247)

Magnesio cuprates are widely used as reagents in the fields of organocopper conjugate addition–enolate trapping chemistry 4h and natural products synthesis. Fragments such as **78** and **79**, utilized in the total synthesis of steroids, (244, 253) are representative outgrowths of this powerful approach.

A few reports have appeared on asymmetric induction in conjugate additions of magnesio cuprates. Diastereofacial differentiations in Michael reactions of mixed cuprates $R_T R_R CuMgCl$ to optically active 2-(*p*-toluene-sulfinyl)cyclopentenones give fairly good enantiomeric excesses (Eq. 70). (243) Conjugate additions to unsaturated imides, prepared from optically pure 2-imidazolones, also proceed with impressive diastereoselectivities. (254) Related results can be obtained with lithium cuprates (vide infra).

The use of chiral mixed cuprates, on the other hand, enables enantioface

differentiation of acyclic α , β -enones. (255-257) Thus in the presence of (*S*)-*N*-methyl-2-hydroxymethylpyrrolidine and copper(I) bromide, methyl Grignard reacts with benzylideneacetophenone to produce the 1,4 adduct in 64% optical yield (Eq. 71). (255) The enantiomeric excess induced in this reaction depends upon the reaction times; short exposures (~0.2 hours) give best results. A later study showed that this particular chiral auxiliary was the most effective among those screened for this purpose. 257a

3.1.2.4. Composition Studies

Although there are relatively few reports which scrutinize the solution composition of various RMgX to CuX ratios, an impressive bank of information has already been amassed. (258-262) Early work based on enolate trapping experiments with acetic anhydride, following 1,4 additions with inhomogeneous mixtures of 2EtMgBr + Cul, pointed to the presence of at least three unidentified reactive species in ether solutions. (258) Admixture of equimolar quantities of copper(I) bromide and methylmagnesium bromide in tetrahydrofuran at -60° also does not afford a homogeneous solution. Nonetheless, to the extent that the copper(I) bromide does dissolve (ca. one third), ¹H NMR analysis at -85° reveals formation of monomeric (CH₃)₃CuMg plus magnesium bromide. (259, 260) Increasing the amount of Grignard by a factor of 3 and warming to -30° gives more (CH₃)₃CuMg ($\delta - 1.54$ ppm vs. tetramethylsilane), as all of the copper salt is solubilized (Eq. 72). Maintaining the 1:1 mixture at -60 to -40° over time, however, leads to several other complexes, the identity of which depends upon the extent of CuBr dissolution (Eq. 73). Confirming the existence of $(CH_3)_8CH_6Mg$ by independent synthesis using copper(I) bromide and dimethylmagnesium was particularly enlightening, and revealed an inclination toward disproportionation to 2 MeCu and $(CH_3)_6Cu_4Mg$. (259) Taken together with other supporting documentation (e.g., elemental analyses of both solid and liquid phases of numerous combinations), 259a these observations have led to the deduction that "Normant" reagents (RMgBr + CuBr) in tetrahydrofuran at about -35° consist of at least five components (Eq. 73). 259a Each cuprate possesses a different stability profile, but in no case does halogen constitute an integral part of these complexes. 259a

$$CuBr + 3 CH_3MgBr \qquad \xrightarrow{THF} (CH_3)_3CuMg + 2 MgBr_2$$
(72)

$$CH_{3}MgBr + CuBr \xrightarrow{THF} (CH_{3})_{6}Cu_{4}Mg + (CH_{3})_{8}Cu_{6}Mg + CH_{3}Cu_{6}Mg + CH_{3}Cu + CuBr + MgBr_{2}$$
(73)

This state of affairs is made somewhat more intricate in that studies by another laboratory pursuing identical goals arrived at conclusions which are not in complete harmony with those cited above. (262) For example, treatment of CuBr LiBr with 3 equivalents of CH₃MgCl in tetrahydrofuran at -50° gives rise to two species in equal amounts (Eq. 74). Attempts to combine

$$3 \text{ CH}_3\text{MgCl} + \text{LiCuBr}_2 \xrightarrow{\text{THF}} (\text{CH}_3)_2\text{Mg} + [(\text{CH}_3)_2\text{Cu}]_2\text{Mg}$$
 (74)

CuBr with 3 equivalents of CH₃MgBr at -80° give four signals of roughly comparable intensities in the ¹H NMR spectrum of this mixture, with the signal at $\delta - 1.53$ ppm assigned to [(CH₃)₂Cu]₂Mg (262) rather than to (CH₃)₃CuMg. (258-260) Use of excess HMPT to completely solubilize these reagents allows for direct ¹H NMR examination of CH₃MgCl + CuCl at reduced temperatures, which shows a single line in the spectrum ($\delta - 1.2$ to -1.3 ppm) corresponding to [CH₃CuCl]₂Mg (Eq. 75). Although this additive apparently

$$CH_{3}MgCl + CuCl \xrightarrow{THF, -77^{\circ}} [CH_{3}CuCl]_{2}Mg$$
(75)

enhances the tendency toward halocuprate formation, (263) it is not obligatory, since CH_3MgCl / CuBr in both 2:1 and 3:2 ratios in tetrahydrofuran without HMPT produce small percentages of bromocuprates (Eqs. 76 and 77). (262) Bromocuprates are more stable than chlorocuprates, since addition of

$$2CH_{3}MgCl + CuBr \xrightarrow{THF} (CH_{3})_{2}Mg + [(CH_{3})_{2}Cu]_{2}Mg + (23\%) (53\%) (76)$$

$$[(CH_{3})_{3}Cu_{2}]_{2}Mg + [(CH_{3})CuBr]_{2}Mg (19\%) (5\%)$$

$3 CH_{3}MgCl + 2CuBr \xrightarrow{\text{THF}} [(CH_{3})_{2}Cu]_{2}Mg + [(CH_{3})_{3}Cu_{2}]_{2}Mg$ $(6\%) \qquad (88\%)$ $+ [(CH_{3})CuBr]_{2}Mg$ (6%) (77)

LiBr to $(CH_3CuCl)_2Mg$ [δ $(CH_3) - 1.31$ ppm] efficiently exchanges bromide for chloride ion to form $(CH_3CuBr)_2Mg$ [δ $(CH_3) - 1.25$ ppm] (Eq. 78). Hence,

$$(CH_{3}CuCl)_{2}Mg \xrightarrow{2 \text{ LiBr}} (CH_{3}CuBr)_{2}Mg$$
(78)
(94%)

using either RMgBr + CuCl or RMgCl + CuBr generates predominantly the bromomagnesio cuprate $(RCuBr)_2Mg$, otherwise written as $2RCu \cdot MgBr_2$ (Eq. 79).

$$2 CH_3MgBr + 2 CuCl \longrightarrow (CH_3CuCl)_2Mg + MgBr_2$$
(7%)
$$+ (CH_3CuBr)_2Mg + MgCl_2$$
(93%)
(79)

Thus, while some degree of discrepancy remains, what does emerge from this work is that cuprates stoichiometrically represented as $RCu \cdot MgX_2$ or R_2CuMgX are often far from discrete entities. Depending on the relative ratios of reagents (mRMgX:nCuX), temperature of formation, solvent(s), and additives, a multitude of species may be present. However, by the judicious selection of values for *m* and *n*, these spectroscopic experiments provide considerable insight as to potential substrate–reagent compatability, and hence may assist in selection of a magnesium-based reagent for a specific application. (264)

3.1.3. Chemistry of Lower-Order Lithio Cuprates

3.1.3.1. Substitution

In the prior review of this topic, the scope and limitations of reactions of lower-order cuprates [Gilman reagents, R_2CuLi] were discussed with respect to structural variations within both the substrate and the cuprate. (1) The mode of preparation of various R_2CuLi was also outlined. In the intervening years, a heightened awareness of the role of ligands during the carbon–carbon bond-forming step has developed. That is, while yields based on educt were

oftentimes high, those viewed with an eye toward conservation of nontrivial organolithium precursors (R_TLi) cannot exceed 50%, since one of the two required R_TLi in (R_T)₂CuLi is usually lost (as the protonated species) upon workup. A need for more economical utilization of R_TLi has spawned several alternative nontransferrable, or "dummy," ligands R_R which permit full utilization of potentially valuable R_TLi . Such mixed cuprates R_TR_RCuLi are generally prepared via prior formation of $R_RCu(R_RLi + CuX)$ to which is added the organolithium R_TLi possessing the ligand of interest (Eq. 80).

$$R_RLi + CuX \longrightarrow R_RCu + LiX \xrightarrow{R_TLi} R_TR_RCuLi + LiX$$
 (80)

The most popular nontransferrable ligands are the 1-alkynyl residues. These include pentynyl-, (265) *tert*-butylethynyl-, 63b (3-methyl-3-methoxybutynyl)-, (266) trimethylsilylethynyl-, (267) and 3-(dimethylamino)propynylcopper-, (268) Each has its advantages and disadvantages with regard to selectivity of transfer, solubility (in ether vs. tetrahydrofuran), and cost effectiveness.

Other mixed cuprates which provide alternatives to homocuprates include mesityl- (269) and heteroatom-containing ligands. Examples of the latter class include the *tert*-butoxy (270) and thiophenoxy groups, (270) as well as the underutilized 2-thienyl moiety derived from metalation of thiophene. (78) More recently, heterocuprates formed from lithium diphenylphosphide and lithium dicyclohexylamide, 271a,b have shown improved reactivity toward primary alkyl halides, acid chlorides, and unhindered epoxides. (271) α -Heteroatom-stabilized carbanions as ligands represent another type of R_RLi, with both sulfonyl (272) and sulfoxide (273) α -anions functioning in this regard. The nitrile ligand, (274) isoelectronic with acetylides, can also be an excellent choice, as it is the only member of this class of ligands which does not require any manipulation (i.e., lithiation followed by metathesis with CuX).

The explanations behind the selectivity of ligand release (91, 275) from copper vary according to R_R, and while speculative, do provide some guidelines for use of mixed reagents. Ligands capable of strong backbonding between

copper *d* electrons and π^* orbitals of acetylenic groups σ bound to the metal tend to negate their release relative to other sp^3 - and sp^2 -hybridized carbon atoms. Cuprates composed of ligands bearing heteroatoms attached to copper may be less prone toward release of these groups based on the pK_a of the ligand's conjugate acid. That is, the cuprate preferably delivers the more basic ligand, leaving behind the more stable RCu. Alternatively, the relative strengths of the resulting bonds as felt in the transition states (carbon–carbon vs. carbon–heteroatom) may also be a factor which contributes to the discriminating nature of mixed heterocuprates.

Ultrasonication can be employed to generate mixed lithio cuprates by combining lithium sand, pentynylcopper·HMPA complex, and an organic halide. (276) Lower-order cuprates mounted on a polymer support can be prepared and show comparable reactivity to homogeneous solutions of R_2 CuLi. (277)

3.1.3.1.1. Alkyl and Alkenyl Substrates

Examples of substitution reactions of lower-order lithio cuprates with various halides and sulfonates are listed in Table IV-A. This methodology has enabled the preparation of specifically labeled compounds with ¹¹C and ¹³C tracers. (278, 279) One can also take advantage of the difference in leaving group aptitude between tosylates, halides, and alkoxides to effect selective coupling in multifunctional substrates. (280, 281) Since organocuprates are less basic than their Grignard or organolithium precursors, their substitution reactions with nonracemic substrates possessing enolizable centers are relatively free of racemization. This has been effectively exploited in chain elongations of L-serine and L-homoserine derivatives. (282) Likewise, optically active α -tosyloxy acids undergo substitution with inversion of configuration at the asymmetric center in the presence of lithium dimethylcuprate. (283)

Reactions of halocyclopropanes with lithium dibutylcuprate provide an atypical route to products of substitution. When bromocyclopropane **80** is treated with dibutylcopperlithium (4 equivalents) in tetrahydrofuran and subsequently with an alkyl halide, alkylated cyclopropanes **82** are formed rather than the expected butyl-substituted compounds. (284) The coupling occurs with retention of configuration, accounted for on the basis of an intermediate mixed cuprate **81**. (284) Dibutylcopperlithium and tetrahydrofuran are both necessary for this reaction to occur. Dimethylcopperlithium in a dimethoxyethane–ether mixture induces 'normal' substitution of monoiodocyclopropanes in high yields. (285)

Geminal dibromocyclopropanes are susceptible to double replacement using excess dibutylcopperlithium. For example, treatment of 1,1-dibromo-2-phenylcyclopropane (83) with 5 equivalents of dibutylcopperlithium in ether—hexane, followed by addition of methyl iodide, results in a mixture of the dialkylated products 84a and 84b (4:1). 284b A mechanism consistent with preferential alkylation *cis* to the phenyl group consists of (1) an initial copper—halogen exchange at the least-hindered site (*trans* to phenyl); (2) butyl migration from copper to cyclopropane carbon displacing halogen with inversion; and (3) alkylation of the resulting organocopper with methyl iodide with retention of configuration. 284b Here again, dibutylcuprate is the reagent of choice since dimethyl- and divinylcuprates lead to "normal" substitution processes proposed to proceed via Cu(III) intermediates. 284b,285

Substitution of enol diphenyl phosphates or triflates with lower-order cuprates provides an efficient route to olefins starting from ketones. Enol triflates react with diorganocuprates in a stereospecific manner and in high yields. (286) On the other hand, while dibutylcuprate reacts with enol diphenyl phosphates in 50–74% yields, the reaction essentially fails with dimethylcuprate. (287) Enol phosphates from β -keto esters or β -diketones couple efficiently with dialkylcuprates, resulting in a general, high-yield synthesis of stereochemically well-defined α , β -unsaturated carbonyl compounds. Both cyclic and acyclic

systems undergo this transformation, although cuprates derived from secondary and tertiary alkyl residues tend to give somewhat lower yields. (288) In contrast, β , β -difluoro enol phosphates, when treated with dibutylcuprate followed by allyl halides, undergo substitution of the phosphate moiety with the allyl group (Eq. 81). (289) An intermediate vinylorganocopper is thought to be the alkylating agent. The reaction of analogous diethyl phosphates, however, gives substitution of fluorine (*cis* to the aryl group) by butyl. Replacement of the aryl group with an alkyl moiety results in cleavage of the phosphate function to the corresponding enolate. (289)

Reactions of (*E*)- β -haloalkenyl sulfones with lower-order cuprates give substitution products with retention of olefin geometry. (290, 291) The corresponding *Z* isomers are less stereoselective, affording an isomeric mixture of products. (291) The reaction of a β -bromostyrene system is even more complex, resulting in several products. (291) Couplings of heteroaromatic halides with dimethylcopperlithium are synthetically unattractive because reduction products predominate. (292)

3.1.3.1.2. Miscellaneous Couplings

Reactions of lower-order cuprates with heteroatomic electrophiles represent a relatively new area in organocopper chemistry. Chiral sulfoxides of high optical purity are obtained from treatment of (–)-menthyl-(*S*)-arylsulfinates with diorganocuprates. (293) Similarly, phosphinate chloro esters derived from cinchonine and dichlorophenylphosphine react with aryl cyanocuprates to produce chiral phosphines and phosphine oxides. (294) Electrophilic amination of dialkynylcuprates with

N,N-dimethylhydroxylamine-O-phosphinate has also been reported. (295)

Lithium bis(*N*,*N*-dialkylamino)cuprates react with carbon monoxide to form the corresponding bis(dialkylcarbamoyl)cuprates; the latter behave as efficient carbamoylating agents toward alkyl halides, epoxides, and acid chlorides (Eq. 82). (296, 297)

$$(RR'N)_{2}CuLi \xrightarrow{CO} [(RR'NCO)_{2}CuLi] \xrightarrow{R''X} RR'NCOR'' (82)$$

While homocuprates produce varying yields of dimers upon autooxidation, (298, 299) di(o-alkoxyaryl)cuprates lead to the corresponding phenols in moderate yields, accompanied by only minor amounts of dimers. (300) An alternative synthesis of phenols from diarylcuprates via reaction with diborane and then alkaline peroxide oxidation has also appeared, (301) although there seems to be no particular advantage in using cuprates instead of organolithium reagents.

Oxidative coupling of anilidocyanocuprates with *o*-lithiobenzamides provides a one-step synthesis of *N*-arylanthranilamides, which can then be easily cyclized to acridone derivates. (302) On a similar note, the heterocuprates **85**, in the presence of oxygen, offer a mild and convenient *N*-alkylation procedure for primary and secondary amines. (303)

$$R_{2}CuLi + R^{1}NHR^{2} \xrightarrow{Et_{2}O} \left[R(R^{1}R^{2}N)CuLi \right] \xrightarrow{O_{2}} R^{1}R^{2}NR$$
85 (15-94%)

A one-pot sequence to 2,3-disubstituted benzoic acids is available by way of lower-order cuprate addition to *o*-oxazolinobenzynes (Eq. 83). (304) Another in situ derivatization involves halide displacement on an α -phosphonyl carbenoid with dialkylcuprates to give good yields of α , α -disubstituted methylphosphonates, (305) highly valued precursors for Horner–Emmons olefination reactions.

Couplings of dialkyl and diaryl cuprates with organomercurials have been studied, but appear to be synthetically unattractive. (306) Dimethylcopperlithium can also be utilized in substitution reactions with

transition metal complexes, as reported for (arene)manganese tricarbonyl cations, (307) and Fischer-type iron–carbene complexes (Eq. 84). (308)

3.1.3.1.3. Carbonyl Compounds

Lower-order cuprate-induced substitutions of acid chlorides are efficient procedures for preparing ketones. (282, 309-311) Alternatives do exist, however, including use of selenoesters as substrates. (312) Organocuprate displacements on S-2-pyridylthioates also afford ketones in high yields, observations which have figured prominently in sequences leading to total syntheses of erythronolide A (313) and monensin. (314) If, however, oxygen is bubbled through solutions of R_2CuLi prior to addition of the thioester, the corresponding carboxylic esters are produced in high yields (Eq. 85). (315) An intermediate alkoxycuprate has been suggested as the reactive reagent.

Dithioesters undergo carbophilic attack, giving rise ultimately to tertiary thiols through the intermediacy of thioketones (Eq. 86). (164) Related regiochemistry is observed in reactions of diphenyl-, dimethyl-, and di(*n*-butyl)cuprates with 1,3-thiazole-5-(4*H*)thiones, (316) although di(*tert*-butyl)copperlithium affords solely reduction products.

$$C_6H_5C(S)SCH_3 \xrightarrow{(CH_3)_2CuLi} C_6H_5C(CH_3)_2SH$$

(86)

(88%)

Additional examples can be found in Table IV-F.

3.1.3.1.4. Epoxides

Ring opening of oxiranes with lithiodiorganocuprates represents a powerful, highly utilized synthetic methodology (see Table IV-B). Monosubstituted epoxides make excellent substrates for lower-order cuprate couplings, the regiochemistry of which favors attack at the least-hindered site. 1,1-Disubstituted oxiranes are opened regiospecifically, while 1,2-disubstituted examples often give mixtures of regioisomers or byproducts of elimination or rearrangement. Trisubstituted examples are best opened with higher-order reagents (Table IX-A). Mixed lower-order cuprates, for example, RCu(CN)Li, offer an economical route to alcohols, where full utilization of the organic ligand can be anticipated, especially with acyclic epoxides (except for styrene oxide). (317) With cyclic systems (e.g., cyclohexene oxide), however, yields are only moderate. (317)

Cuprate couplings with epoxides containing neighboring functionality can often result in secondary processes. Thus 4-vinylcyclohexene dioxide, on being treated with 1 equivalent of $CH_3Cu(CN)Li$, undergoes ring opening of the less-hindered pendant epoxide (Eq. 87). (318) The initial ring-opened product **86** then reacts further to induce an intramolecular (regiorandom) ring opening of the cyclic oxirane forming **87** and **88**. The proportion of these two bicyclic materials increases when 2 equivalents of the cuprate are used, conceivably owing to mixed heterocuprate formation between the alkoxide of **86** and residual (or additional) cyanocuprate. (318)

Nonracemic 2,3-epoxy acids react with diorganocuprates in a regioselective manner. The *trans*-epoxy acids **89** are preferentially attacked at the more electrophilic C-2 position, with selectivities of **90:91** between 8:1 and 30:1

reaching a maximum for the *tert*-butyldiphenylsilyloxy derivative **89**, $R = CH_2OSi(t - Bu)(C_6H_5)_2$. (319) The *cis*-epoxy acids, on the other hand, are attacked at the C-3 center. These results complement the known regioselectivity of cuprate attack on α , β -epoxy esters. (320, 321)

Cuprate-mediated opening of epoxy alcohols **92** is highly stereoselective and leads to structural subunits such as **93**, commonly encountered in many

polyacetate/propionate-derived natural products. Dimethylcopperlithium attacks the *cis*-epoxide **92** exclusively at the 2-position (i.e., away from the methyl group at C-4) to form **93** in 95% yield. (322) The origin of this regioselectivity is hindrance from the C-4 methyl moiety, rather than chelation effects associated with the hydroxy group. In the absence of the alkyl appendage at C-4, the regioselectivity is lost. (322) The *trans*-epoxide **94** shows complementary behavior with dimethylcopperlithium and produces exclusively the corresponding diastereomer **95**. (322)

Ring opening of α -acyloxyepoxides by diorganocuprates was envisioned as a good method for nucleophilic α -alkylation of ketones. Unfortunately the yields are modest, since undesired side reactions, principally involving competitive electron transfer to form unsubstituted (reduced) products, predominate (Eq. 88). (323)

Reactions of cyclohexene oxide with organocuprates containing nonracemic ligands have been investigated. In all cases the β -substituted alcohols so formed reflect very low levels of optical induction. (324)

3.1.3.1.5. Allylic Substrates

The predominant mode of lower-order cuprate reactions with allylic substrates is one of allylic inversion; that is, an $S_N 2'$ addition which occurs in a stereoselectively *anti* fashion.

Synthetic uses of these 1,3 displacements with diorganocuprates are listed in Table IV-C. Readily available allylic acetates function nicely in this regard. Coupling (in an *anti* – S_N2' mode) with silylcuprate reagents stereospecifically produces stereochemically defined allylsilanes (Eq. 89). (325)

The regio- and stereoselectivity of alkylation of allylic acetates and pivalates with lower-order cuprates has been studied. 53c,59,60,326 Examination of cinnamyl acetates reveals an overwhelming preference for regioselective α attack, the conjugated olefin comprising 95% of the product mixture (Eq. 90). 59c,d For

cis- and *trans*-5-methyl-2-cyclohexenyl acetates **96**, which are regiochemically unbiased systems, the reaction with dimethylcopperlithium is stereospecific: *cis*-**96** gives *trans*-**97** and vice versa. 59e Deuterium labeling studies show that this reaction occurs primarily (>80% selectivity) via the *anti* S_N2' mode. 53c,59e The steric effects associated with these couplings have also been assessed. (327) Preparatively, however, cuprate couplings with allylic acetates are accompanied by ester cleavage thus lowering yields, and hence use of trimethyl-benzoates

is recommended. 53c Best results are obtained by copper(I) cyanide-catalyzed Grignard reactions of organocuprates with allylic acetates. (62) Recently, the involvement of a copper *d*-orbital with the appropriate π * and σ * orbitals of the substrate has been proposed to explain the *anti*-stereochemistry in S_N2' reactions with cuprates (cf. 12, page 145). (39)

In sharp contrast to the *anti*-S_N2' outcome from reactions of allylic esters with R₂CuLi, the corresponding carbamates show typically a *syn*-reaction mode, although maintaining an S_N2 -type addition. 52,53b Mechanistic proposals for this reaction have also been put forth. 53b Departure from *anti* selectivity can also occur because of steric effects. Thus in the cyclopentenyl bromide **98**, the pendant acetate and chloride groups hinder approach of the cuprate from the side opposite the bromine and dictate *syn*-S_N2 attack (Eq. 91). (328, 329)

Reactions of homocuprates with acyclic vinyloxiranes are known to occur with allylic rearrangement, although such dogma does not prevail in the case of cyclic systems, where both 1,2 and 1,4 additions are observed. (330, 331) The mixed cyanocuprates, however, not only conserve potentially valuable organic residues, but also favor 1,4 attack with over 90% selectivity. (331) A variation of this methodology involves the trimethylsilyl enol ethers of α , β -epoxycyclohexanones. Addition (*anti*-S_N2') to these substrates is equivalent to nucleophilic substitution at the α ' position of cyclohexenones [Eq. 92,

R' = Si(CH₃)₃]. (332, 333) The lithium enolates of α, β -epoxycycloalkanones (Eq. 92, R = Li) behave in the same fashion, (333) and the resulting allylic alcohols can be converted into α '-substituted cyclohexenones by acid hydrolysis, elimination, and rearrangement. (332, 333)

Lithium alkoxides of allylic alcohols together with an equivalent of cuprous iodide, (methylphenylamino)triphenylphosphonium iodide, and an organolithium, combine to effect S_N2' substitutions (Eq. 93). 334a,b This four-step,

one-pot process, for which mechanistic studies have been carried out, gives >96% γ -alkylation. 53a An allyloxyphosphonium salt and a lower-order mixed amidocuprate are believed to be the reactive partners. The sequence has since been extended to propargylic alcohols from which allenes are obtained in good yields, also in a single reaction vessel. 334c

Nonracemic oxazolidines derived from α , β -unsaturated aldehydes and (+)or (–)-ephedrine are receptive toward lower-order cuprate additions, producing optically active aldehydes after hydrolysis (Eq. 94). (82, 83, 335, 336) This,

of course, is tantamount to asymmetric conjugate addition to enals. Best results are obtained in hexane with enantiomeric excesses (ee) up to 80%. 335c When the β carbon contains an electron-withdrawing carbomethoxy group, the cuprate adds to the enoate (reversing the regiochemistry of addition) to give diastereomeric excesses (de) on the order of 95% along with good chemical yields. (336) This methodology has provided a short synthesis of (*R*)-(+)-citronellal of 85% optical purity. (83)

Alkylcyanocuprates react with optically active bromoallenes preferentially (>97%) via an *anti*-S_N2' mode to afford optically active acetylenes (Eq. 95). The combination of sterically hindered bromoallenes together with bulky cuprates, however, redirects the coupling to favor straight substitution. (31)

3.1.3.1.6. Propargylic Substrates

Displacement reactions of propargylic systems in an S_N2' sense to afford allenes are usually best effected by organocopper (RCu) or Grignard-derived (catalytic) copper reagents. (180) Nevertheless, there are scattered reports discussing reactions of lower-order cuprates with propargylic substrates for the preparation of stereodefined allenylsilanes, 325b as well as diversely substituted allenes. (28) Additional examples can be found in Table IV-D. Vinylallenes have been formed via related couplings which set the stage for their facile conversion to cyclopentenones (Eq. 96). (337)

Reactions of homocuprates with propargylic acetates occur in an *anti*- $S_N 2'$ sense, possibly via a two-step mechanism involving a transient Cu(III) allenyl intermediate. (338, 339) Such an intermediate can be trapped with iodine and subsequently utilized in a synthesis of chiral iodoallenes (Eq. 97). (339) Another

route to chiral allenes involves homocuprate displacement of diastereomerically pure propargylic carbamates, although net chiral induction is only moderate. (340) Problems associated with chirality control in allene formation from propargylic substrates stem from the fact that various organocuprates may induce racemization of chiral allenes. (35) Occasionally, reactions of propargylic substrates with cuprates are accompanied by considerable amounts of reduction products which may be preparatively useful. (341, 342)

3.1.3.2. Carbocupration

Carbocupration of terminal acetylenes can be plagued by removal of the acetylenic hydrogen. (343) Nonetheless, acetylene itself undergoes efficient carbocupration with lower-order cuprates in ether to afford dialkenylcuprates (transfer of both ligands from R₂CuLi occurs), which go on to participate in various electrophilic substitution processes (Eq. 98; see also Table V). (344-350)

$$(n-C_{5}H_{11})_{2}CuLi + 2 HC \equiv CH \xrightarrow{Et_{2}O} \left[\left(n-C_{5}H_{11} \right)_{2}CuLi \right]$$

$$(98)$$

$$\frac{2 n-C_{4}H_{9}Br, HMPT}{(C_{2}H_{5}O)_{3}P, -30 \text{ to } 20^{\circ}} \xrightarrow{n-C_{5}H_{11}} C_{4}H_{9}-n$$

$$(81\%)$$

Stannylcupration of acetylenes is facile, but involves a dynamic equilibrium which can be driven forward only with protons as electrophiles. (351, 352) Hence, disubstituted but not trisubstituted vinylstannanes can be realized (Eq. 99).

Reactions of ω -bromophenylacetylenes with dibutylcuprate followed by quenching provides an efficient means of preparing exocyclic alkenes. (353) The reaction is highly solvent-dependent, with best results obtained in pentane–ether (7:1). Presumably the reaction proceeds via initial bromine–copper exchange and then intramolecular carbocupration (Eq. 100).

Whereas organocopper (RCu) species in tetrahydrofuran give *Z*-selective enol ethers as products, reactions of methoxyallene with dialkylcuprates in ether produce *E*-selective vinyl ethers (Eq. 101). (354)

The first and only known example of carbocupration of an olefin has recently appeared. (355) Lower-order lithio cuprates add efficiently to the double bond of a cyclopropenone ketal, the corresponding cuprate from which can be further elaborated by subsequent reactions with electrophiles such as alkyl

and vinyl halides. The latter class, however, requires the presence of a Pd^0 catalyst. Conjugate addition also readily occurs, assisted by chlorotrimethylsilane and N,N -dimethylpropyleneurea (DMPU), to afford from methyl vinyl ketone the *cis*-disubstituted cyclopropanone ketal **99** in good yield.

3.1.3.3. Conjugate Addition

1,4 Additions of carbon- and heteroatom-based ligands (R₃Si- or R₃Sn-) from R₂CuLi to unsaturated systems, best performed in the absence of good donor solvents, are usually quite efficient, facile, and highly tolerant of other functionality present in the educt. As a consequence, this methodology represents one of the most frequently used tools for structure elaboration in organic chemistry. Beyond the reports cited below, which allude to such topics as functionalized reagents, tandem conjugate addition/enolate trapping, variations in substrate makeup, and asymmetric synthesis, many more examples can be found in Table VI.

The utility of functionalized cuprates is of considerable synthetic value, since the 1,4 adducts offer opportunities for further manipulation. As an illustration, 1,4-diketones are readily available via the conjugate addition of α -methoxyvinyl cuprates (Eq. 102). 356a Other examples include those

deria -vinylacetals 356a,359 and α -vinyl ethers. 360,356c α -Alkoxycuprates have also recently been described. (361) While all of these reagents are potentially useful, they unfortunately show reduced reactivity relative to unfunctionalized diorganocuprates, and in the extreme (e.g., α -carbethoxyvinyl cuprates) may find their chemoselectivity altered such that 1,2 addition takes place. (362)

Spirocyclic systems can be generated in a single operation by use of novel bisorganocuprates (e.g., Eq. 103). (363) Although β -halo enones are easy to come

by, preparation of α , ω -dianions, especially those bearing functionality, is the limiting feature of this route. Aryl and olefinic residues can be introduced, however, as part of the newly formed ring. (363)

One-pot conjugate addition–enolate alkylation is the theme of two recent reviews. 4h,364 Many examples of this concept exist in the cuprate literature, especially concerning the syntheses of prostaglandins and steroids (vide infra and Tables XI-C and XI-E). However, the alkylation of an enolate derived from a cuprate conjugate addition is still not a well-understood process. Although it has been claimed that such enolates are lithium bound, (365) their reactivity differs from that of "normal" lithium enolates. A common practice for alkylation of such enolates is to use chlorotrimethylsilane as a trapping agent to form the isolable silyl enol ether which can be subsequently exploited as desired. Direct alkylation of enolates derived from conjugate addition does not follow any obvious pattern and is usually highly dependent on solvent and the nature of the alkylating agent. (366)

Asymmetric conjugate addition employing predominantly lithio, rather than magnesio, (254, 256, 257) cuprates has been approached from various directions. Use of a chiral auxiliary *en route* to chiral mixed cuprates ($R_T^*R_RCuLi$), such as that derived from azaenolate **100** affords ee's up to 82% (Eq. 104). (367) The

use of chiral mixed cuprates ($R_TR_R^*$) CuLi has been examined. (368, 369) The chiral nontransferring ligands used include metalated, optically active α -alkylphenethylamine derivatives (101), alcoholates of 102, and thiolates of 103. Although ee's are low (0 to ~15%), there is an indication here that R_R^* is involved in the transition state of the 1,4 addition. 369b In contrast, when the chiral amine is part of the R_T within the homocuprate, very high de's can be obtained (Eq. 105). (370) Various prolinol derivatives (104a) pursued on the basis of earlier observations (257) have also given enantioselectivities as high as 83% when incorporated into 104b. (371) Thus far, best results (ee > 95%) emanate

from cuprate clusters incorporating the modified ephedrine **105**. (372) Model **106** has been advanced which envisions complexation of both lithium ions in solution (RR'CuLi and LiX) and predicts cuprate attack from the *re* face of the enone leading to product **107** (Eq. 106).

Another approach to asymmetric conjugate addition relies on the presence of optically pure additives in the reaction mixture, unsuccessfully attempted initially using sparteine (108) as the chiral ligand. (373) Chiral amine modified cuprates [$RCu(NR_2)$]Li Amine, e.g., Amine = 109] have recently been used

to afford ee's up to 50%. (374) Low optical purities (up to 15% ee) are obtained when optically active cosolvents (R, R)- or

(*S*,*S*)-1,4-(dimethylamino)-2,3-dimethoxybutane are used as the only source of chirality in the medium. (375) However, with (–)-N- α

-naphthoyl-2S-methoxymethyl-4S-(*tert*-butyl)thiopyrrolidine (**110**) as a chiral additive, β -methylation of chalcone in 95% ee is realized with lithium dimethylcuprate. (**376**)

1,4 Additions to chiral enoates are yet another means of inducing asymmetry at newly formed carbon–carbon bonds. Such reactions can be successfully carried out with chiral alkylidene perhydro-1,4-oxazepine-5,7-diones **111**, the conjugate adducts from which can be easily hydrolyzed to β -substituted alkanoic acids in 56–99% optical yields (Eq. 107). (377) On the same theme,

(–)-menthyl acrylates (378) and atropisomers of β -chloro- β -(2-methylnaphthyl)methyl acrylates (379) have also been investigated, although with less impressive results. Recently, optically active 1,3-dioxanone derivatives have been found to direct cuprate 1,4 additions with high facial selectivities. (380) Likewise, nonracemic enoate **112**, derived from (+)-camphor, induces excellent diastereoselectivity (95% de) in its reaction with lithium dibutylcuprate. The conjugate adduct **113**, on treatment with lithium tetrahydroaluminate, gives the corresponding alcohol in high chemical (92%) and optical (95%) yields (Eq. 108). (381) Conjugate additions of cuprates to chiral vinyl sulfoximines also give excellent diastereomeric excesses. (382)

Apart from enones and enoates as conventional substrates, conjugate additions of cuprates to acetylenic sulfones (383) and acetylenic esters are also of interest. The latter class of compounds usually gives *cis* addition; reactions with diallyl- or dihexadienylcuprates follow the same pattern but are non-regioselective on the part of the cuprate ligand. (384) Reactions of lower-order cuprates with dienones occur primarily via 1,6 addition. (385) Cuprate additions to α -allenic ketones and sulfones have been studied, (386) as have reactions with vinylphosphonates, (387) *N*-nitrosoenamines, (388) 2(1H)-pyrimidinones, (389) and dialkoxyphosphinylketene-*S*,*S*-acetals. (390) Polymerization of methyl methacrylate occurs with lithium dibutylcuprate as initiator. (391)

Cyclopropane ring opening by lower-order cuprates may be classified as homoconjugate addition, a few examples of which are in the literature. (64, 392, 393) In most cases the cyclopropane ring in the substrate is either in conjugation with an enone or is geminally diactivated. Nucleophilic ring opening takes place similarly with 1-arylsulfonylbicyclo[1.1.0]butanes and lithium diorganocuprates (Eq. 109). (394)

3.1.4. Reactions in the Presence of Additives

One of the more recently emerging aspects of organocuprate chemistry is the impact made by additives on reactions of lower-order cuprates. Although phosphorus-containing compounds (e.g., phosphines, phosphites) have been utilized for decades with the intention of solubilizing copper(I) salts and as stabilizing ligands, the apparent compatibility of electrophilic species such as boron trifluoride etherate and chlorotrimethylsilane with Gilman cuprates has significantly expanded the scope of this methodology. In general, the presence of additives of this type (i.e., electron-deficient reagents) tends to increase both rates and yields of cuprate–educt couplings. Hence, since no changes in the usual protocols for cuprate use are necessary aside from the introduction of the additive, it is not surprising that their frequency of deployment continues to grow. Most applications can be found in natural product total-synthesis endeavors, and are listed in Tables XI-A to XI-F.

3.1.4.1. Substitution

The admixture of a lower-order cuprate with (usually excess) boron trifluoride etherate at low temperatures represents a most potent combination for effecting displacements of oxygen- and nitrogen-containing functional groups. For example, cyclohexene oxide is opened by a lithium dipentylcuprate–boron trifluoride complex within 10 minutes at –78° in 92% yield, (395) whereas homo- or heterocuprates alone tend to need higher temperatures and longer reaction periods with corresponding decreases in overall efficiency. Similar enhanced reactivity is reported for isoprene monoepoxide. (395) Ether is the best solvent for such reactions; the order of mixing of the cuprate, the substrate, and boron trifluoride does not have any effect on the reaction pathway. (395) Aziridines also undergo alkylation with lithium diorganocuprates in the presence of boron trifluoride etherate; (396) very poor yields (~10%) are obtained when this Lewis acid is absent (Eq. 110).

Acetals and ketals, which are usually stable toward organocopper reagents alone, can be easily cleaved when boron trifluoride etherate is added to the reaction mixture. (395) Various lower-order cuprates can be used, and ether as a solvent is indispensable (Eq. 111). With orthoesters, an interesting selectivity

is found in this cleavage process; when the reaction is performed in tetrahydrofuran, it stops at the acetal stage. (395)

Cleavage of allylic acetals with Grignard reagents in the presence of copper(I) catalysts shows excellent S_N2' selectivity. (122) Although use of $R_2CuLi \cdot BF_3$ enhances the reaction rate, only marginal regioselectivity is observed, (397) while complexes $RCu \cdot BF_3$ show high regioselectivity. (398) The *anti*- S_N2' coupling of a diarylcuprate can be mediated by boron trifluoride etherate. (399)

Diastereoselective cleavage of chiral acetals with $R_2CuLi \cdot BF_3$ offers a new route to optically pure secondary alcohols (Eq. 112). (400) Selectivity is dependent

upon not only the nature of the acetal (alkyl vs. aryl), but also on the organocopper species and the Lewis acid, a diorganocuprate $BF_3 \cdot Et_2O$ being the best choice. Titanium tetrachloride in conjunction with R₂CuLi gives low yields, probably because of the incompatability of cuprates with this powerful Lewis acid. (399, 401)

Judging from the importance of lithium ions to cuprate reactivity (see discussion on mechanism of conjugate additions and effects of crown ethers), it follows that extra alkyllithium added to solutions of R₂CuLi can also be considered an additive. For example, delivery of a 3-furyl group regioselectively to the least-hindered center of substituted epoxides occurs best when the epoxide **114**/Gilman homocuprate **115** mixture contains two additional equivalents of 3-furyllithium (Eq. 113). (402) Substitution reactions of cyclic,

alicyclic, and aryl halides also give good results with $Me_2CuLi \cdot MeLi$. (403) As expected with enones, however, the presence of free methyllithium can lead to competitive products of 1,2 addition. (404)

3.1.4.2. Conjugate Addition

The effects of different additives on conjugate additions of lower-order cuprates can be quite varied. Tri-*n*-butylphosphine is a commonly employed solubilizing ligand which can greatly assist in maintaining homogeneity throughout the course of a cuprate reaction. This has been used to advantage in studies on additions of (CH₃)₂CuLi to allenic phosphine oxides 405a and ketones. 405b Triphenylphosphine (406) and lithium bromide (186) have been claimed to increase the rates and yields of 1,4 additions. Inhibitory effects have been noted with tetracyanoethylene (406) and 12-crown-4-ether, (407) the latter additive acting to sequester Li⁺ from the cuprate cluster. Anomalous results have been obtained with aluminum chloride together with lithium dibutylcuprate on maleates and fumarates. (408) The Lewis acid of choice, as with substitution reactions, seems to be boron trifluoride etherate. Both boron trifluoride etherate (2 equivalents) and excess methyllithium (2 equivalents) enhanced the rates and yields of cuprate conjugate additions to didehydrohomoserine- y -lactone 116 (Eq. 114). (409) Boron trifluoride etherate has

also been used to gauge the extent of topological bias associated with a 1,4 addition of dimethylcopperlithium to a chiral acetal enone. (410)

Several papers attest to the dramatic rate increases observed when chlorotrimethylsilane is present during a conjugate addition reaction of a lower-order cuprate. This seemingly incongruous pair is especially effective for reactions of enones, (80, 361, 411) enoates, (412, 413) and even with α , β -unsaturated amides, in which case no reaction is normally observed without chlorotrimethylsilane (Eq. 115). (412) α , β -Unsaturated nitriles, however, give both 1,2-and 1,4-addition products. (412)

The effect of chlorotrimethylsilane together with HMPA or 4-dimethylaminopyridine is also dramatic and is particularly useful for conjugate additions to α , β -unsaturated aldehydes. (414) Chlorotrimethylsilane can also influence rates of conjugate additions of mixed cuprates, where an otherwise unreactive allylic ligand, as part of mixed cuprate 117, is delivered in high yield (Eq. 116). (414)

Magnesium bromide is an essential ingredient for a successful 1,4 addition of a Gilman cuprate in a route to levuglandin E_2 . (415)

Zinc bromide can have a major impact on Michael addition reactions of dialkylcopperlithiums to nonracemic vinylsulfoximines. (382) With $(CH_3)_2CuLi$ ·Lil alone, the imine directs delivery of the methyl group to afford an 88:12 ratio of diastereomers. Removal of the lithium iodide raises the selectivity to 94:6. With the zinc bromide premixed with the substrate, cuprate attack occurs mainly from the opposite direction, and the ratio is completely reversed (Eq. 117).

3.1.5. Composition Studies

3.1.5.1. Solution Experiments

An appreciation for the chemical makeup of lowerorder lithio cuprates has been slow to materialize. Much of the insight stems from NMR spectral studies using multinuclear and variable temperature techniques. Early ¹H NMR observations on dimethylcopperlithium in ether at –60° showed only the presence of a single species, implying that any equilibrium of the type shown in Eq. 118 must lie heavily toward the cuprate. (416)

$CH_{3}Li + (CH_{3}Cu)_{n} \longrightarrow (CH_{3})_{2}CuLi$ (118)

A ¹³C-NMR spectrum also gave a singlet at δ –9.6 ppm. (417) Admixture of dimethylcopperlithium with additional methyllithium in ether did not give rise to a third signal at any temperature. Later work, however, performed in *dimethyl ether* at very low temperatures, provided the first demonstration of the existence of a higher-order cuprate trimethylcopperdilithium (Me₃CuLi₂) (418) This species exists in equilibrium with the lower-order reagent and free methyllithium, with *K* values always favoring the monoanionic salt (*K* < 1; Eq. 119). (418, 419) ¹H NMR data on various *n*-BuCu:*n*-BuLi ratios containing

 $0.25 [CH_3Li]_4 + 0.5 [(CH_3)_2CuLi]_2$ (CH₃)₃CuLi₂ (119)

coordinating phosphine ligands (*n*-Bu₃P) suggest that both (Bu₂CuLi)₂ and Bu₄CuLi₃ exist in ether solutions, while (Bu₂CuLi)₂ and Bu₃CuLi₂ are formed in pentane. (420) Extensive use of ⁷Li NMR, together with ¹H NMR spectroscopy and supporting chemical experiments, however, did not indicate such occurrence of higher-order cuprates Me₃CuLi₂ derived from CuX, X = Br, I, in either tetrahydrofuran or diethyl ether. (7)

Recent spectral studies (¹³C and ⁶Li NMR) of cuprates derived from mixtures of copper(I) iodide or bromide and phenyllithium in dimethyl sulfide provide evidence for the existence of higher-order species Ph_3CuLi_2 in this medium (Eq. 120). (421) Such is not the case in tetrahydrofuran, however, where only Ph_2CuLi and PhLi are observed, (421) corroborating an earlier assessment. (7)

$$CuX + 3C_6H_5Li \xrightarrow{CH_3SCH_3} (C_6H_5)_3CuLi_2 + C_6H_5Li$$
(120)
(minor)

The nature of the lower-order species dimethylcopperlithium has also been found to be a function of the manner in which it is prepared. (7) Solutions of dimethylcopperlithium in tetrahydrofuran, from which the lithium salts have been removed, give an equilibrium mixture of three components with K_{eq} 11 (Eq. 121). (7, 422) With an equivalent of LiX left in solution as the byproduct

$CH_{3}Li + (CH_{3})_{3}Cu_{2}Li = [(CH_{3})_{2}CuLi]_{2}$ (121)

of metathesis between MeLi + CuX, Eq. 121 no longer holds because rapid exchange of both lithium ions (between cuprates and LiX) and methyl groups [between the aggregate Me₃Cu₂Li and (Me₂CuLi)₂] takes place even at very low temperatures (423, 424) on the NMR time scale. In ether, irrespective of the presence or absence of lithium salts, no such equilibrium is found. (7) Surprisingly, the species Me₂CuLi prepared in ether, upon addition of tetrahydrofuran, is spectroscopically different from that formed initially in the same final ether/tetrahydrofuran ratio. Individually, these spectra point to the fundamental reagents **118** and **119** prepared first upon addition of RLi to CuX, which vary according to solvent. In tetrahydrofuran a ratio of 1.50 RLi:1.00 CuX leads first to R₃Cu₂Li, (418, 419) while in ether 1.66 RLi:1.00 CuX generates R₅Cu₃Li₂. (425) Addition of the remaining RLi (0.50 and 0.34, respectively), which brings the ratio up to the "normal" 2:1 value, converts each aggregate to a form of R₂CuLi (Eq. 122).

in THF: 1.50 RLi + 1.00 CuX
$$\longrightarrow$$
 R₃Cu₂Li $\xrightarrow{0.50 \text{ RLi}}$ "(R₂CuLi)"
118 (122)
in Et₂O: 1.66 RLi + 1.00 CuX \longrightarrow R₃Cu₂Li $\xrightarrow{0.34 \text{ RLi}}$ "(R₂CuLi)"
119

Information concerning mixed lower-order lithio cuprates RR¹CuLi is even more sparse. The question arises as to whether a 1:1:1 mixture of RLi, R¹Li, and CuX affords RR¹CuLi as the sole species in solution, or whether it exists in equilibrium with percentages of homocuprates R₂CuLi and R¹₂CuLi (Eq. 123). (426, 427) If the latter is true, which reagent effects the chemistry? It has

$$2 \operatorname{RLi} + 2 \operatorname{R'Li} + 2 \operatorname{CuX} \longrightarrow 2 \operatorname{RR'CuLi} \stackrel{?}{\Longrightarrow} \operatorname{R_2CuLi} + \operatorname{R'_2CuLi}$$
(123)

been shown that treatment of Cul·*n*-Bu₃P with MeLi and *t*-BuLi (in a 1:1:1 ratio) affords a species, presumably Me(*t*-Bu)CuLi, which gives a methyl singlet in the ¹H NMR spectrum at δ – 1.70 ppm. (428) In contrast, the spectrum recorded for an equimolar mixture of Me₂CuLi and (*t*-Bu)₂CuLi (together with *n*-Bu₃P) shows the methyl resonance at δ – 1.25 ppm, both experiments having been run under identical conditions of solvent (2:1 ether:pentane), temperature (–20°), and concentration (0.33 M). The implication here is that

ligands in lower-order cuprates do not scramble. However, more recent spectroscopic results (¹H NMR) with the Me(*n*-Bu)CuLi system (no phosphine present) have unequivocally shown that both formulations lead to the same species which displays two singlets for the methyl group on copper, indicative of *cis*-*trans* isomers of a presumed dimeric cluster (Eq. 124). (250) None of the

$$CH_{3}Li + n-C_{4}H_{9}Li + CuI$$

$$Et_{2}O + CH_{3}(C_{4}H_{9}-n)CuLi$$

$$(CH_{3})_{2}CuLi + (n-C_{4}H_{9})_{2}CuLi$$

$$(124)$$

individual homocuprates could be detected by NMR. Moreover, exposure of preformed Me₂CuLi to 1 equivalent of *n*-BuLi leads to the same spectrum of Me(*n*-Bu)CuLi, along with the appearance of 1 equivalent of free MeLi (Eq. 125). (250) Thus, while the example of *t*-BuLi-delivered lower-order cuprates

$$(CH_3)_2CuLi + n - C_4H_9Li \longrightarrow CH_3(C_4H_9 - n)CuLi + CH_3Li$$
(125)

may be unique, (428) and the effects of added phosphine ligands yet to be fully determined, it seems clear that alkyl ligands may move on and off of Cu(I) monoanions with ease. The factors that govern ligand mixing between homocuprates, however, are still not fully understood.

The conclusions drawn from these studies are that (1) several distinct forms of " R_2CuLi " appear to exist, (429) and (2) the fashion in which a lower-order cuprate is originally constituted [i.e., with regard to lithium salts, choice of solvent(s), etc.] may well need to be considered a reaction variable having impact not only on product yields but also on reproducibility.

3.1.5.2. Solid-State X-Ray Analyses

The sensitivity of most lithio organocuprates to moisture, oxidation, and temperature has seriously ham pered efforts to obtain crystalline materials suitable for X-ray analysis. Although successful investigations describing mononuclear species $M^+[R_2Cu(I)]^-$ are rare, several neutral complexes with cluster geometries have been reported, particularly in the phenyl series where bridging aryl groups are common. These include $Cu_2Li_2(C_6H_4CH_2NMe_2)_4$, (430) $[Li_2Cu_3Ph_6]_2[Li_4Cl_2(Et_2O)_{10}]$, (431) $[Li(THF)_4] - [Cu_5Ph_6]$, (432) and $[Li(Et_2O)_4][LiCu_4Ph_6]$. (433) Perhaps the species most relevant to synthetic uses of lower-order cuprates is **120a**, the first example of a lithium cuprate containing Li and Cu in a 1:1 ratio as part of the central core. (430, 434) This X-ray structure supports the concept of a dimeric model for Me_2CuLi proposed earlier based on solution X-ray scattering, molecular weight measurements,

and kinetic data from reactions with methyl iodide in ether under carefully controlled conditions. (10) The *ortho-N,N*-dimethylaminomethyl residues in **120a** serve as "well-positioned intramolecular solvent molecules," completing the preference of lithium for tetracoordination. The cuprate (p-CH₃C₆H₄)₄Cu₂Li₂, (435) crystallized from benzene and solubilized upon addition of 2 equivalents of ether, is likely to have related structure **120b**, in which

case ether occupies two vacant coordination sites on lithium. Solution NMR studies (¹H and ¹³C) on both **120a** and **120b** also point to a dimeric array involving asymmetrically bridging ligands, 73,252,436a,b apparently a feature intrinsic to other metal 1B—lithium clusters (i.e., $Ar_4M_2Li_2$, M = Ag, Au). 434–436a,437

Placement of bulky organic groups on copper has led to characterization of $[Cu(dppe)_2][Cu(C_6H_2Me_3)_2]$ monomeric complexes (438)(dppe = 1,2-diphenylphosphinylethane) and $[Li(THF)_4][Cu(C(SiMe_3)_3)_2]$. (439) Another technique for realizing pure lower-order cuprate monoanions relies on the lithium-ion-sequestering properties of 12-crown-4 ether, which has led to salts represented as $[Li(12-crown-4)_2][CuR_2]$, R = Me, Ph. (440) Recently, crystalline [Cu(PMe₃)₄][CuMe₂] (**121a**) (441) and RCuP(*t*-C₄H₉)₂Li (**121b**) (442) have yielded to X-ray inspection, which for the former established its ionic composition as implied by conductivity measurements. A comparison of solution ¹H NMR data for **121a** and the lithic cation counterpart ([Li][CuMe₂]), for which large upfield shifts for protons on carbon attached to copper are common, leads to the conclusion that interactions between R and Li⁺ in R₂CuLi are involved, as found for **120a**. (430) Extended Hückel calculations for dimeric Me₂CuLi, on the other hand, predict preferential ligand bonding to copper to lithium. (443)Lithio cuprate rather than 121b, а novel heteroligand-containing species, is also monomeric. (442) Some interesting features of 121b have been noted, including the strong association of the lithium cation with one phosphorus atom rather than two, as in $[Cu(t-C_4H_9)_2P]_2[Li(THF)_2]$. (444) As a result, four-coordinate lithium relies on

three molecules of tetrahydrofuran as ligands, and hence **121b** is more accurately described as $[RCuP(t-C_4H_9)_2\{Li(THF)_3\}]$. (442) Thus, while much has been learned about lower-order lithic cuprates (445) since their introduction four decades ago, (5) there is still no unequivocal proof of structure for the original species, Me₂CuLi.

3.2. Organocopper and Organocopper–Lewis Acid–Ligand Reagents 3.2.1. Reactions of Organocopper Reagents

Metathesis between an organolithium (RLi) and Cu(I)X salt, X = I, Br, Cl, (1:1 ratio) leads to an organocopper complex RCu. These reactions, driven in part by the large difference (>3 V or ~80 + kcal/mol) in reduction potentials (446) between Li⁰ ($E_{red} = -3.04$ V) and Cu⁰ ($E_{red} = +0.15$ V), tend to be rapid and quantitative, although the resulting species have stability, aggregation state, and solubility characteristics dependent upon the nature of the organic ligand.

In terms of reactivity, neutral reagents RCu tend to be far less robust than their lithio or magnesio anionic counterparts (cuprates). Presumably this accounts for their relatively limited use, although excellent compatibility with Lewis acids has greatly expanded their value as agents for carbon–carbon bond formation.

3.2.1.1. Substitution

Substrates which undergo substitution with neutral complexes RCu range from allylic and propargylic systems to activated alkenyl halides. The occasional enhanced stability of an organocopper species, in comparison with the parent organolithium, has permitted preparation of optically active cyclopropylcopper reagents (e.g., **122**) which maintain their configurational integrity. (447)

More examples of substitution reactions using RCu are illustrated in Table VII.

3.2.1.2. Conjugate Addition

For most circumstances, 1,4 additions mediated by copper reagents fall under the domain of lower-order lithio or magnesio cuprates. However, there are instances where RCu reagents give better results than conventional cuprates. Such examples are found in the chromone and thiachromone systems (Eq. 126). (448, 449)

$$\int_{S}^{O} Cl + n - C_4 H_9 Cu \cdot S(CH_3)_2 \xrightarrow{THF/Et_2O}_{-78^\circ, 1 h} \xrightarrow{O}_{S} C_4 H_9 - n$$
(126)

Organocopper reagents add to α , β -acetylenic sulfoxides in nearly quantitative yields and exclusively in a *cis* fashion. (450) Dimethylcopperlithium shows similar reactivity, but other cuprates tend to

attack at sulfur. This chemistry has been extended to optically active acetylenic sulfoxides. (451) β -lodovinyl sulfones undergo attack by RCu to displace the halide with strict retention of double-bond geometry. (290, 450) Nonracemic vinyl sulfoximines **123** react in

ether to generate high diastereomeric excesses of 1,4 adducts. (452) With Lil-free RCu, the selectivity is in the same direction, but only on the order of 2:1. A model (124) consistent with these results is proposed where Lil is

chelated followed by addition of RCu from the less sterically demanding π face. With both lower- and higher-order cuprates, the opposite approach is favored to the extent of ca. 15:85. (452)

 β -Haloacrylates behave as Michael acceptors toward tributylstannylcopper to give (stereospecifically) geometrically defined β -stannylacrylates (125). (453)

Cl $CO_2CH_3 + (n-C_4H_9)_3SnCu$ $\xrightarrow{THF} (n-C_4H_9)_3Sn$ CO_2CH_3 (1.3 eq) (1 Tosylate and thiophenoxide leaving groups require higher temperature (ca. 25°), and with the latter appendage, stereospecificity is lost. Reactions involving organocuprates give lower yields. (453)

3.2.1.3. Reactions of Acetylenes

Stannylcupration of 1-alkynes with $(CH_3)_3SnCu \cdot S(CH_3)_2$ is believed to be a reversible process which necessitates an in situ proton source to quench the intermediate vinylcopper species. (351, 352) The reaction is highly regioselective, with less than 8% of the 1,2-disubstituted alkene being formed (Eq. 127). (351)

$$HC = C(CH_{2})_{3}OH + 2 (CH_{3})_{3}SnCu \cdot S(CH_{3})_{2} \xrightarrow{THF, -63^{\circ}, 12 h} CH_{3}OH, (60 eq) \xrightarrow{Sn(CH_{3})_{3}} (CH_{2})_{3}OH (127)$$
(88%)

Methylcopper (3 equivalents) converts acetylenes via divinylchloroboranes into symmetrical (*E*,*E*)-1,3-dienes **126** in high yields (Scheme 12). (454) Suppression of the formation of byproduct **127**, presumably formed by competitive reductive elimination from a copper(I) boronate complex **128** resulting from a series of redistribution equilibria, is achieved by starting the reaction at -78° and warming to ambient temperature. Scheme 12.

3.2.2. Reactions of Organocopper Reagents in the Presence of Additives Although neutral organocopper complexes (RCu) alone are utilized infrequently, their modification upon addition of Lewis acids leads to substantially improved reactivity profiles which are often unique by comparison with either RCu or anionic organocuprates. Since the initial report using boron trifluoride etherate for such purposes, (455) various other Lewis-acid candidates have also been screened. A review of this novel aspect of organocopper chemistry has recently appeared. 4i Lewis acids that can be used for activating RCu include boron trifluoride, magnesium bromide, and aluminum chloride, along with some other boranes and alanes. Other additives which significantly modify neutral organocopper species are chlorotrimethylsilane–tetramethylethylenediamine (TMEDA) mixtures and the extensily used phosphines.

3.2.2.1. Substitution

Although arylcopper reagents are usually quite unreactive, (456) in the presence of phosphine ligands (e.g., triphenylphosphine) they will add to formaldehyde, (457) carbon dioxide, (458) and carbon disulfide. (459-461) Similar behavior has been noted (using tri-*n*-butylphosphine) for alkynylcopper species as well. (462) See Table VIII for some related reactions of [RCu + additives].

The butylcopper–aluminum chloride mixture is effective in displacing a γ substituent (in an S_N2 sense) from cyclic γ -acetoxy- α , β -unsaturated esters. (463) By contrast, dibutylcuprate gives products of reduction. (463) Displacements on allylic acetals and ethers can be achieved with the RCu·BF₃ combination. Without the Lewis acid present, these reactions either fail or give complex mixtures. (397, 400)

Various Lewis acids, including boron trifluoride, boron trichloride, titanium tetrachloride, and aluminum chloride, were examined as additives in reactions of RCu with cinnamyl and crotyl chlorides. (464) Best results (>95% γ selectivity) were realized using RCu· BF₃. Similar regioselectivity from unprotected allylic alcohols is observed as long as excess (3 equivalents) reagent is utilized (Eq. 128). (464) With a free hydroxy group as part of the cyclohexenyl

framework **129a**, the cuprate is guided toward *syn* delivery, whereas the inverted acetate **129b** gives the product of *anti* S_N2' attack by the organocopper reagent. No significant stereochemical bias is seen from either the corresponding *cis* or *trans* allylic chloro congeners.

3.2.2.2. Conjugate Addition

Modified, neutral organocopper reagents are used for a multitude of conjugate addition schemes, 4i and can be especially valuable for hindered substrates where conventional cuprates are slow to react. Sterically congested enones, (465) and most notably enoates, react smoothly with RCu reagents in the presence of boron trifluoride etherate (Eq. 129). (465) When

 α -substituted enoates are involved, RCu·BF₃ delivers the organic ligand in the usual way, the *syn* isomer being preferentially obtained upon quenching and workup (Eq. 130). (466)

Chemoselectivity differences between RCu·BF₃ and R₂CuLi·BF₃ are vividly illustrated in their behavior toward γ -alkoxyenoates. (467) The neutral complexes (RCu) add in a Michael sense to give a mixture of *syn* and *anti* products, the ratio of which is governed by the olefin geometry in **130** (Eq. 131). Both the

boron trifluoride-modified cuprate and R_2CuLi alone, however, prefer an S_N2 pathway, giving products of allylic substitution at the α position.

Enhanced reactivity is also reported for the tributylphosphine–RCu mixture, with nearly quantitative yields of conjugate adduct being claimed with such challenging substrates as isophorone. (468, 469)

Equimolar amounts of RCu and aluminum chloride are effective for adding to β -cyclopropyl enones in a 1,4 manner. (470, 471) This is in sharp contrast to dialkylcuprates where mixtures of 1,4 and 1,6 adducts are the norm, the latter reflecting cleavage of the three-membered ring. (64, 392, 393)

One of the more advanced applications of additive-altered RCu reagents is in the field of asymmetric conjugate addition reactions. Chiral enoates such as **131**, derived from camphor, (472) undergo highly diastereoselective (de >98%)

conjugate additions with RCu·BF₃ complexes. (473-475) The selection of a Lewis acid can affect the stereodifferentiation of an addition; thus *N*-enoylsultam **132** reacts with RCu·P(C₄H₉-*n*)₃ in the presence of boron trifluoride to give C(β)-*si* face selection, whereas with ethylaluminum dichloride, strong preference for the C(β)-*re* face by RCu is observed (Eq. 132). (474, 475)

A detailed examination of α -alkoxy organocopper reagents (476, 477) reveals that conjugate additions to enones occur readily in the presence of boron trifluoride etherate. (476) The process is sensitive to the nature of the copper(I) salts used in their preparation, with best results obtained from freshly recrystallized copper(I) bromide dimethyl sulfide complex (478, 479) which has been pretreated with 5 mol % of isopropylmagnesium bromide [to remove Cu(II) impurities] prior to addition of an α -alkoxylithium species. This chemistry can be utilized as a means of introducing a hydroxymethyl anion equivalent, and also for purposes of preparing unusual C-glycosides, such as 133.

Functionalized organocopper complexes $RCu \cdot P(C_4H_9 - n)_3$ are the presumed outcome from treatment of the corresponding halides with highly

activated copper metal. (480-482) Reagent formation (e.g., **134**) occurs in tetrahydrofuran following lithium naphthalenide reduction of Cul·P(C₄H₉-*n*)₃. Aside from undergoing 1,4 additions (Scheme 13) (481) and cross couplings with acid chlorides (480) and allylic and benzylic halides, (480) ring openings of epoxides 482a can also be carried out. Organocopper complexes generated

in this fashion may also contain remote epoxides within the reagent, subsequent intramolecular cyclization of which occurs upon warming to -35° . 482b The mode of ring closure can be controlled by solvent as well as the nature of the alkyl groups located on the epoxide. Yields are good to excellent and other functionalities such as halogens and nitriles are unaffected by the oxidation sequence. Should no external electrophile be present, efficient dimerization can be effected as reaction temperatures warm above 0° in the presence of Et₃P. (480)

Scheme 13.

Several additional examples of the reactions of additive-modified organo-copper reagents can be found in Table VIII-B.

3.2.2.3. Composition Studies

Essentially all of the composition data dealing with neutral organocopper complexes is based on structural information emanating from X-ray crystallographic studies. While the compounds examined may be of little obvious synthetic merit, these analyses do provide considerable insight as to potential aggregation states and other solution phenomena which may help explain reagent reactivity and the role of ligands as additives (e.g., phosphines) (483, 484) in reactions of RCu complexes. Perhaps equally important is the reminder that their chemistry may not involve monomeric species. Of course, when considering these compounds, the potentially vital role which solvents play in their couplings cannot be ignored.

A review of the structural chemistry of organocopper(I) compounds appeared in 1977, (485) and another in 1982, (67) which contain a number of citations concerning mixed metal clusters involving Cu(I) [including as examples Ir, Fe, Re, Ru, Hg, and even Cu(II)], in addition to X-ray analyses of more traditional RCu complexes. A spectrum of differing levels of aggregation states and bonding situations exists, ranging from monomeric to octameric lattices with the majority bearing aryl, alkenyl, and/or acetylenic groups. Structural studies of more recent vintage are described below. Phenylcopper, containing a tetrahedral array around the metal (136), exists as a monomeric species in the presence of

1,1,1-tris[(diphenylphosphino)-methyl]ethane or "triphos" $[CH_3C(CH_2PPh_2)_3]$. 486a It can be formed by treatment of [(triphos)CuCl, **135**] with phenyllithium in tetrahydrofuran. A similar

arrangement has been noted for the silylcopper species Ph₃SiCu·3PMe₃ of approximately tetrahedral configuration which forms yellow crystals of monomeric material from toluene. The copper–silicon bond was found to be 2.340(2) Å, interestingly slightly longer than the composite of the covalent radii (2.28 Å). 486b

A stable trinuclear complex **137** consisting of a mesityl (Mes) and two benzoyl (OBz) ligands on copper can be prepared (40% yield) via intraaggregate exchange of Cu_5Mes_5 with $Cu_4(OBz)_4$ in benzene. (487) The cluster contains

two bridging benzoate groups and a three-center, two-electron bonded mesityl ligand bridging two copper ions.

Several tetrameric complexes have been prepared, including the bistetrahydrothiophene-containing tetramesitylcopper(I) compound **138**. (488) It

is derived from cyclic pentameric $(CuMes)_5$ and tetrahydrothiophene in >80% yield, and forms a puckered eight-membered ring with four copper atoms arranged in one plane. A tetranuclear compound $[Cu_4[4-CH_3C_6H_4)CH_3C \equiv C - (C_6H_4N(CH_3)_2-2)]_2(C_6H_4N(CH_3)_2-2)_2]$, containing both aryl and alkenyl bridging groups, has been crystallized and consists of a central core of copper atoms in a rhombus-like configuration. (489) The olefinic and aryl moieties each occupy adjacent edges of the Cu₄ core.

3.3. Higher-Order Organocuprates

3.3.1. Reagents from CuCN

Subsequent to the two previous reviews on the chemistry of higher-order cuprates, 6a,b much additional information has been learned about these still relatively new reagents. 6c There has been no shortage of examples of their use either, as they continue to infiltrate the mainstream of synthetic methodology. That the dianionic cyanocuprates $R_2Cu(CN)Li_2$ are truly unique species, as compared to monoanionic Gilman reagents R₂CuLi, was recently established based upon a cuprate oxidation scheme using o-dinitrobenzene. (490) These results are fully consistent with earlier IR and NMR spectral studies which provided physical evidence to this effect. (491) A general study evaluating the effectiveness of all of the commonly used sources of Cu(I), including CuBr, CuBr Me₂S, CuI, CuCN, CuSCN, and CuOTf, (492) led to the conclusion that CuCN (along with CuBr·Me₂S) is a "superior" precursor for cuprate formation in ether or tetrahydrofuran. However, only conjugate additions to cyclohexenone were considered in this report, (492) and it is the more challenging process of substitution where higher-order reagents may often stand alone. (493, 494)

In the discussion which follows, an emphasis is placed on new developments which have not been highlighted in prior reviews. (6) A full listing of reactions involving higher-order cuprates can be found in Table IX. Their uses in natural products-related endeavors are dispersed throughout Table XI.

3.3.1.1. Substitution

In general, higher-order cyanocuprates tend to be more reactive reagents than lower-order cuprates toward halide displacements and epoxide openings, perhaps because of their buildup of negative charge in the cluster (i.e., as dianions rather than as monoanions with R₂CuLi). Most noteworthy in this respect are their couplings of secondary iodides and bromides, (493, 494) and displacements on trisubstituted oxiranes. (494, 495) They are fully "compatible" with boron trifluoride etherate and usually lead to enhanced rates and yields in reactions of epoxides in the presence of this additive. 496a Hence, R₂Cu(CN)Li₂[orRR Cu(CN)Li₂] provides many of the same benefits realized by lower-order reagents. 4i For example, the ligand-conserving mixed 2-thienylcuprates R(2-Th)Cu(CN)Li₂, 496b together with boron trifluoride etherate, combine to open epoxides efficiently at low temperatures (Eq. 133). 496a

Chirality transfer in a 1,3 sense in acyclic γ , δ -dioxygenated enoates (e.g., **139**) is effected with excellent stereocontrol using higher-order cyanocuprates in conjunction with boron trifluoride etherate. 497a α -Alkylations usually occur with >99% diastereoselectivity, an outcome which is also obtainable with lower-order reagents in the presence of this Lewis acid. 497b The advantage offered by the higher-order cuprates lies in the net efficiency of the process; Gilman cuprates invariably lead to competing products of γ -alkylation and/ or reduction, while use of R₂Cu(CN)Li₂ affords yields in excess of 94% (Scheme 14). (497)

Higher-order cyanocuprates modified by boron trifluoride etherate have also been critically examined in terms of their ring-opening reactions of various epoxides. (498) This extensive study reveals that while lower-order cuprates (R₂CuLi), which generate lithium halide salts in their preparation, always give halohydrin byproducts, in no case is this observed using either lower- or higher-order cyanocuprates alone in either tetrahydrofuran or ether. Yields for reactions of R₂Cu(CN)Li₂ versus RCu(CN)Li are, not surprisingly, (495) considerably higher (Eq. 134). This combination is apparently so potent that even

the mesityl moiety is transferred in excellent yield, (498) an especially noteworthy example in light of its reputation as a generally nontransferrable ligand (Eq. 135). (269)

Additional citations are compiled in Table IX-A.

3.3.1.2. Conjugate Addition

Reactions of higher-order cyanocuprates with α , β -unsaturated ketones and esters have been studied with regard to such variables as selectivity of ligand transfer, solvent and additive effects, and substrate variability. (499, 500) Those prepared from 2 equivalents of the same organolithium and 1 equivalent of copper(I) cyanide are the more reactive species relative to those containing a second residual ligand R_R [i.e., mixed cuprates R_TR_RCu(CN)Li₂]. Even highly congested enones can usually be considered good Michael acceptors, and with especially difficult cases the use of boron trifluoride etherate can further assist. (496) Thus the hindered educt isophorone, together with the relatively unreactive aryl cuprate (C₆H₅)₂Cu(CN)Li₂, successfully form the product of 1,4-phenyl delivery in >95% yield when boron trifluoride etherate is present (Eq. 136). (496) Without this additive, essentially

none of the desired product is obtained with this or any other cuprate reagent. Although tetrahydrofuran and dimethoxyethane work well as solvents for simpler systems, ether is by far the medium of choice with β , β -disubstituted enones. (499, 500)

Contrary to results using mixed alkyl vinyl cuprates in displacement reactions where the sp^3 -based ligands are selectively released from copper, (494) in conjugate addition schemes the vinylic group is delivered rather than the alkyl moiety (Eq. 137). (499, 500) This pattern holds as well for mixed Gilman

cuprates, although the ratio of vinyl to alkyl transfer is somewhat lower (ca. 25:1). (501)

Compounds formally arising from homoenolate aldol reactions can be constructed via Michael additions of higher-order α -alkoxycuprates to enones (Eq. 138). (361, 502) The reagents are easily prepared from the stannane precursors using successive transmetalations from tin to lithium to copper. Yields are greatest when both the higher-order species and chlorotrimethylsilane (5 equivalents) are used. The diastereoselectivity is in the 3:1 range, although

the relative relationships within either isomer have not been established. α , β -Disubstituted enones likewise give synthetically useful yields of conjugate adducts. More highly congested systems (e.g., isophorone), notwithstanding the presence of excess chlorotrimethylsilane, do not follow productive pathways, as dimeric materials reflecting cuprate decomposition prevail. The methodology has been applied to the preparation of a variety of substituted tetrahydrofurans (Eq. 139). (503)

A novel route for the preparation of mixed higher-order vinyl cuprates relies on a transmetalation scheme between a vinylstannane and $Me_2Cu(Cn)Li_2$ (Eq. 140). (504) Simply mixing the two organometallics in tetrahydrofuran

at room temperature produces mixed cuprate **140** quantitatively, which then selectively delivers the vinylic ligand in a 1,4 manner to various α , β -unsaturated ketones (Eqs. 141 and 142). This in situ process, unlike traditional cuprate formation, does not require pregeneration of the corresponding vinyllithium species.

3.3.1.3. Carbocupration–Metallocupration

Addition of a carbon–copper bond across a terminal acetylene using a higher-order cuprate has not been successful to date, presumably because of their greater basicity relative to Gilman reagents. Thus proton abstraction from the alkyne simply leads to a nonreactive salt and an inert copper complex returning starting material upon workup.

Less basic reagents consisting of silyl or germyl ligands, however, readily add to acetylenes, affording products which are useful synthetic intermediates. The stereo- and regiochemistry of addition are such that, for silylcupration, (505) products of *syn* addition are formed exclusively with the silyl substituent at the
terminus. The initial vinylcopper species 141 may be transformed further upon introduction of an electrophile E⁺ (Eq. 143). When mixed alkyl silyl

cuprates (e.g., $CH_3[C_6H_5(CH_3)_2Si]Cu(CN)Li_2$) are involved, the more electropositive ligand is transferred selectively. This observation applies not only in silylcupration reactions with acetylenes, but also in substitution and conjugate addition processes as well. 505b

Allenes undergo *syn*. metallo-metalations with (Me₂PhSi)₂Cu(CN)Li₂ to give either vinyl- or allylsilanes. (506) Simple alkylallenes react quickly at low temperatures to give products cleanly. The cuprate delivers the silyl ligand not only to give allylsilanes, but also in a manner which places this group at the less-substituted position in unsymmetrical situations (Eq. 144).

Allene itself, as with phenylallene and unlike the case above, gives a single (*E*)-vinylsilane upon workup following *syn* addition of the cuprate (Scheme 15). (507) Remarkably, when the intermediate bis-organometallic **142** is quenched with iodine at low temperature, a rearrangement ensues to afford the iodoallylsilane **144**. Such is not the case with chlorine as electrophile, which leads to vinylsilane **143**. Scheme 15.

Higher-order triphenylgermyl cuprates (Ph₃Ge)₂Cu(CN)Li₂ display less well-behaved regiochemical patterns with terminal alkynes. (508) Simple alkylsubstituted systems give ca. 4:1 ratios of terminal olefins **145**, an outcome

opposite to that with silyl cuprates. Moreover, the additions are sensitive to stereoelectronic factors, since phenylacetylene and internal heteroatoms reverse this ratio. Similar observations have been made with trialkylstannylcuprates. (1695)

Further illustrations of these 1,4 additions can be found in Table IX-B.

3.3.1.4. Composition Studies

Insofar as cyanocuprates $R_2Cu(CN)Li_2$ are concerned (for the discussion on R_3CuLi_2 , see the related section on lower-order lithio cuprates), their discrete nature has been established by IR and NMR spectroscopy. (491) Addition of increasing amounts of methyllithium to a tetrahydrofuran solution of MeCu(CN)Li at -20° results in the conversion of the lower order into the higher-order cyanocuprate Me₂Cu(CN)Li₂, as shown by ¹H NMR spectroscopy. The mixed cuprate Me(*n*-Bu)Cu(CN)Li₂ (146) in tetrahydrofuran gives two

sharp singlets for the methyl group on copper, as well as two triplets for the methylene of the butyl ligand attached to the metal.

The doubling of signals, confirmed by ¹³C NMR, (491, 509) and also seen with lower-order reagents RR'CuLi, (250) is attributed to geometrical isomers within a dimeric cluster. The mixed cuprates appear to form irrespective of their mode of preparation; sequential addition of methyllithium and *n*-butyllithium to copper(I) cyanide gives the identical spectrum to that observed upon mixing Me₂Cu(CN)Li₂ with an equimolar quantity of *n*-Bu₂Cu(CN)Li₂.

In diethyl ether, as is true with lower-order systems, (420) these species are different because of the absence of a good Lewis base to act as occupant of the fourth coordination site on copper. Such a circumstance encourages the nitrile ligand to fill this void, thereby generating oligomeric cuprates, as manifested by their spectral properties. Proton NMR spectra for 146 are now illdefined, displaying broad resonances at -20° for both the methyl and methylene groups. (491) Surprisingly, upon cooling to -65° , free methyllithium is observed, indicative of an equilibrium between lower-order species and free organolithium, which nonetheless does not usually interfere with their conjugate addition reactions. Infrared spectra of 146, which also show sharp absorptions for the nitrile groups (bridging and nonbridging) in tetrahydrofuran, lose their definition as well when recorded in diethyl ether. (491) Hence, to date, the evidence seems to suggest that higher-order cyanocuprates are dimeric in tetrahydrofuran. In ether, they appear to be in a higher aggregation state, bridged via nitrile ligands, as in 147. (491, 510)

The influence of additives on reactions of cyanocuprates has been addressed to determine whether they affect the substrate, the cuprate, or both. Couplings run in the presence of boron trifluoride etherate (2 equivalents), which can dramatically alter reaction rates and yields in both 1, 4 additions (496) and epoxide openings, (496, 498) may now be viewed as potentially involving a modified reagent. (511) Admixture of either a homo- [R₂Cu(CN)Li₂] or mixed [RR'Cu(CN)Li₂] cuprate with this Lewis acid generates a nitrile bound reagent

148. The inclusion of boron trifluoride into the cluster introduces a more powerful Lewis acid relative to a lithium cation and is suggested to account for the enhanced rates of these reactions (Eq. 145). This notion is contrary to the more commonly held view that initial enone (or oxirane) activation by the

Lewis acid occurs followed by a second bimolecular reaction with the cuprate (Eq. 146). 4i

The other additive of considerable popularity in terms of accentuating cuprate couplings is chlorotrimethylsilane. The effects of this (and related) species on higher-order reagents have also been studied, and the results are quite surprising. (512) Even at very low temperatures (<– 75°), introduction of R₃SiX to a cuprate (prior to adding the educt) leads to immediate sequestering of the cyanide ligand from copper by the silyl halide to afford a lower-order cuprate as the predominant copper-containing species in the medium (Eq. 147).

$$2 R_{2}Cu(CN)Li_{2} \xrightarrow{4 (CH_{3})_{3}SiCl} R_{2}CuLi + (CH_{3})_{3}SiCN + LiCl + [R_{2}Cu(CN)Li_{2} + (CH_{3})_{3}SiCl]$$
(147)

3.3.2. Reagents from CuSCN

Although copper(I) thiocyanate was originally thought of as a source of lower-order cuprates, (5) it has been found to function akin to copper(I)

cyanide upon treatment with 2 equivalents of an organolithium reagent. (513) Thus, rather than metathesis occurring to generate lithium thiocyanate, a higher-order species $R_2Cu(SCN)Li_2$ (149) results (Eq. 148). The nature of the bonding

 $2 \text{ RLi} + \text{CuSCN} \xrightarrow{} \text{R}_2\text{Cu(SCN)Li}_2$ 149(148)

between copper and the ambident thiocyanate ligand was investigated using integrated absorption intensities (514) from IR spectra of these reagents relative to 1,4-dicyanobenzene. The data, in line with the hard/soft acids and bases model, (515) confirmed that sulfur (soft) in SCN⁻ is attached to copper (soft), rather than nitrogen (hard).

Only a few examples citing the use of these reagents have materialized since the initial report. (513) Geminally dihalogenated cyclopropanes (e.g., **150**) undergo double displacements with reagents **149**, (516) as do α -oxoketene dithioacetals (e.g., **151**) (517, 518) and vinylogous thioesters (e.g., **152**). (519)

During an extensive study on Michael additions of cuprates containing nonracemic ligands, higher-order thiocyano reagent **153** was evaluated in terms of its chirality transfer properties. (520) The extent of asymmetric induction found in the product ketones varied depending upon solvent and substrate. What is particularly striking is that the sense of chiral induction observed with this higher-order reagent is opposite to that seen with lower-order analogs **154** (Scheme 16). Scheme 16.

3.4. Reactions of Other Organocopper Species

Cuprates prepared from nonintegral ratios of organolithium to copper halide, for example, R₃Cu₂Li and R₅Cu₃Li₂ (see section on composition studies of lower-order lithiocuprates), have also been screened for their synthetic potential. (403, 404) Organometallics of general formula R₃Cu₂M, with M = Li or MgBr, are excellent reagents for effecting carbocupration of 1-alkynes. (521) Lithium bromide is a required additive for these reagents, which are claimed to be superior to both the RCu·MX_n and R₂CuM formulations. The trinuclear copper complex (CH₃)₅Cu₃Li₂ is quite effective in conjugate methylation of α , β -unsaturated aldehydes, (425) and reagents of this type (i.e., R₅Cu₃Li₂) may actually not have reached their full potential in light of developments using in situ activators such as chlorotrimethylsilane. They are less prone toward competing 1,2 addition, although in highly hindered compounds they offer little advantage over Gilman reagents (Eq. 149).

Several bimetallic reagents can be added across acetylenes under the influence of copper(I) salts to form highly functionalized alkenes. Examples

include silylboration, (522) silylzincation, (523) stannylzincation, (524) stannylmagnesation, (524) silylmagnesation, (525) and stannylalumination (Scheme 17). (526)

Scheme 17.

Vinylalanes and vinylboronates can be allylated with allylic bromides in an S_N2' fashion given the presence of cuprous halides. (527-529) With the electrophile missing, oxidative dimerization takes place. (530, 531) Copper(I) cyanide can also be used in place of copper(I) halides, as illustrated in the total synthesis of (+)-bongkrekic acid (Scheme 18). (532) Sodium boronate **155** undergoes a transmetalation of the vinylic ligand from boron to copper, perhaps forming a lower-order cyanocuprate, which presumably then couples with the bromoacetylene to afford the pentaenyne **156**. Scheme 18.

Alterations in the gegenion associated with lower- and higher-order cuprates have been studied in hopes of arriving at more finely tuned reactivities and

perhaps some new elements of chemoselectivity. Replacement of a lithium by a sodium cation in higher-order reagents, thereby generating the mixed metal cluster $R_2Cu(CN)LiNa$ [or RR Cu(CN)LiNa] tends to decrease reactivity toward enones, as higher reaction temperatures are needed and yields are somewhat depressed compared to their dilithio counterparts. (533) Use of these mixed clusters with boron trifluoride etherate, however, can significantly improve the outcome (Eq. 150). Both monosodio lower-order (R_2CuNa) and

disodio higher-order [RR Cu(CN)Na₂] cuprates are also relatively unreactive toward 2-cyclohexenone. (534) In these couplings, chlorotrimethylsilane increases yields substantially, while both 12-crown-4 and 15-crown-5 ethers retard ligand transfer.

The corresponding change from RR'Cu(CN)Li₂ to the magnesio halide analog RR Cu(CN)LiMgX (**158**) has a similar dampening effect on cuprate reactivity. (**535**) As with the sodio cuprates **157**, (**533**) they are formed by the admixture of copper(I) cyanide with an equivalent each of RLi and R'MgX, RLi plus R'Na, or 2 equivalents of RNa (Eqs. 151–153). Epoxide openings

 $2 RNa + CuCN \longrightarrow R_2Cu(CN)Na_2$ (152)

$RLi + R'MgX + CuCN \longrightarrow "RR'Cu(CN)LiMgX"$ (153) 158

with **158** (R = 2-thienyl), especially with substrates that are challenging (e.g., cyclohexene oxides) can be plagued by competing 1,2-halohydrin formation, which suggests that **158** is not a discrete reagent. (535) 1,1-Disubstituted oxiranes are simply too hindered to react, and may also be consumed by cationic polymerization. Monosubstituted epoxides and primary halides, however, afford good results using **158**. Conjugate additions of **158** are acceptable for uncongested enones, and where tolerable, boron trifluoride etherate can drastically affect the level of success realized (Eq. 154).

A higher-order dicyano cuprate, RCu(CN)₂[$(n-C_4H_9)_4$ N]Li, derived from the addition of RLi to Cu(CN)₂N(C₄H₉-*n*)₄ (**159**), effects both substitution and conjugate addition reactions with unhindered substrates. (536) The lower-order isolable species **159** is derived from copper(I) cyanide and $(n-C_4H_9)_4$ NCN, which are mixed in methanol at room temperature. The unusual association of two attenuating cyanide ligands together with the non-Lewis acidic tetraalkylammonium counterion combine to take a severe toll in terms of reactivity. Nonetheless, for specific needs, as in the case of a synthesis of (±)-12-hydroxyeicosa-5,8,14(*Z*), 10(*E*)-tetraenoic acid (HETE), (536) it is the reagent of choice (Scheme 19).

Recently, zinc halide salts of lower-order cyanocuprates have been promoted

as especially mild and selective reagents which show excellent functional group tolerance within the cuprate. They can be made by oxidation of zinc metal in a mixture that contains dibromoethane and chlorotrimethylsilane as activators/initiators (Scheme 20). (537) Exposure of the organozincate to copper(I) cyanide solubilized with lithium chloride leads to the mixed reagents 160, which can then effect several standard cuprate-mediated carbon–carbon bond-forming events. The use of both a deactivating ligand (cyano) and gegenion (zinc iodide) accounts for their internal compatibility with many electrophilic centers.

Scheme 20.

Mixed copper(I) and zinc halide dimetallic reagents lead to products of *gem*-dialkylation in good yields. (538) Organozincates, including Reformatsky reagents, undergo typical cuprate displacements on activated halides with copper(I) salts in the pot. (539, 540) Zinc homoenolates (e.g., **161**) are especially valuable synthetic tools which undergo Michael additions to enones and ynones in the presence of copper(I) bromide dimethyl sulfide, with HMPA and chlorotrimethylsilane playing essential roles (Scheme 21). (541, 542) **Scheme 21**.

Several hydrido cuprates of general formula $Li_nCu_mH_{(m+n)}$ are known, some of which have interesting and potentially useful synthetic properties. Li_4CuH_5 is

reputed to be a more efficient reagent for alkyl halide reduction than is lithium aluminum hydride, whereas Li₂CuH₃ behaves as a Michael donor of hydride. (543) The subsequently discovered lower-order hydride species RCu(H)Li, with R = SC₆H₅ or *t*-C₄H₉O, can function in a similar way. (544) Related complexes of lesser-known constitution have been generated from LiAl(OC₄H₉-*t*)₃H and NaAl(OCH₂CH₂OCH₃)₂H₂ solutions containing copper(I) bromide. (545, 546) Interestingly, methylcopper catalyzes the conjugate reduction of α , β -unsaturated ketones with diisobutylaluminum hydride, the aluminum enolate from which can be trapped with various activated electrophiles. (547, 548) Other hydride-containing copper(I) species derived from a mixture of CuCl, MgBr₂, Et₃N, and NaBH₄ (or NaH), (549) or (*n*-C₄H₉)₃SnH and (CH₃)₂CuMgBr , (550) add to terminal acetylenes to afford products of symmetrical coupling: (*E*, *E*)-1,3-dienes and *E*-disubstituted olefins.

Although the phosphine-stabilized hexameric copper hydride $[CuH \cdot P(C_6H_5)_3]_6$ and related complexes have been known for some time, (551, 552) their ability to deliver hydride in a 1,4 sense has only recently been unveiled (Eq. 155). (553) Competing 1,2 addition does not occur. The reagent is fully compatible with chlorotrimethylsilane and can be used in the presence of water.

3.5. Applications of Organocopper–Organocuprate Reagents to Natural Products Syntheses

The true measure of the value of an organotransition metal reagent lies in the extent to which it is successfully employed, allowing a transformation to be realized which might otherwise require multiple steps to achieve. In this sense, the organocopper reagent is, perhaps, without peer. A multitude of strategies toward a vast array of complex natural products have embraced the benefits of organocopper reagent-based carbon–carbon bond constructions. In this section, a brief representative sampling of some uses of the various copper reagents within the context of total synthesis is described. Tables XI-A through F contain an extensive listing of examples found in the literature, classified according to the ultimate target structure.

In the alkaloid area, (±)-perhydrogephyrotoxin (167) was synthesized with the

aid of the lower-order cuprate $(n-C_4H_9)_2$ CuLi . (554) Primary tosylate **164**, derived sequentially from precursors **162** and **163**, undergoes smooth displacement in ether at –20° to arrive at the *n*-pentyl side chain characteristic of the saturated analog of naturally occurring gephyrotoxin (**165**), and dihydrogephyrotoxin (**166**) (Scheme 22). (554) Scheme 22.

Terpenoid natural products have attracted a tremendous amount of synthetic effort over the past decade, and with these efforts has come a considerable dependence on organocopper reagents for key bond constructions. The potent combination of a higher-order cyanocuprate in the presence of boron trifluoride etherate has been used for establishing quarternary centers in the triquinane sesquiterpenoid area. (511) The vinyllithium-derived reagent ($CH_2 =$ CH)₂Cu(CN)Li₂, useful as a hydroxymethyl group equivalent, (476, 477) adds to tricyclic enone 168 in a Michael sense exclusively from the β face in excellent yield. (555) Subsequent manipulations of the ethenyl residue (i.e., vicinal dihydroxylation, oxidative cleavage, and hydride reduction) give the required one-carbon appended material which was ultimately converted into the highly oxygenated capnellene tetraol 169 (Scheme 23). (555) A methyl group has also been introduced via this technology en route to coriolin, (556) while a synthesis of forskolin has been significantly assisted through the use of $(CH_2 = CH_2)Cu(CN)Li_2$ plus boron trifluoride etherate. (557) Scheme 23.

A total synthesis of (±)-cortisone, representing applications of cuprate chemistry in the steroid area, employs a boron trifluoride etherate-activated, copper(I)bromide·dimethyl sulfide assisted 1,4 addition of a zinc homoenolate to bicyclic enone **170**. (558) The stereochemistry at the newly formed center, > 95% aunder the conditions shown (Scheme 24), depends upon the additive; without boron trifluoride etherate a 1:1 mixture of diastereomers is unexpectedly obtained. Further transformations of the three-carbon chain build up the A and B rings of the cortisone nucleus (**171**). (558) **Scheme 24**.

The essentially stereospecific *syn* addition of lower-order lithic cuprates across acetylenes provides a quick synthetic entry into pheromones where the purity of a Z olefinic component is crucial. Large-scale production of the insect pheromone *Cossus* cossus has been achieved via carbocupration of acetylene

with preformed cuprate **172**, followed by alkylation of the resulting vinyl cuprate intermediate **173** with an iodoacetate in the presence of added phosphite (Scheme 25). (559) Similar sequences have been executed on a 180-mmol scale with yields in the 77–92% range and isomeric purities typically >99.9%. Scheme 25.

A one-pot, "three-component-coupling" sequence involving the conjugate addition of a phosphine-stabilized organocopper complex to a substituted cyclopentenone, followed by enolate trapping, configures the prostaglandin skeleton in a remarkably rapid fashion. (560) A nonracemic THP-protected enone, upon treatment with the species derived from vinyllithium 174 and copper(I) iodide (1:1 mix) solubilized with tri-*n*-butylphosphine, affords the adduct enolate which can be quenched with aldehyde ester 175 (Scheme 26). (561-563) The overall yield of 176 from this series of reactions is 83%, with the remaining steps (mesylation, elimination, reduction, hydrolysis) to arrive at (–)-PGE₁ methyl ester all proceeding very efficiently as well (84–92%). (564) Natural material was then obtained by ester hydrolysis using pig liver esterase (86%).

Scheme 26.

Similar tactics can be applied to the three-step preparation of PGE_2 from an optically active trialkylsilyl-protected 4-hydroxycyclopentenone. (561, 562) Coupling in these cases was accomplished with both allylic and propargylic iodides of the derived intermediate triphenyltin enol ethers to afford **177a** and **177b**, respectively (Scheme 27). Scheme 27.

Many other types of compounds of natural origin have been synthesized using copper reagents to effect critical bond formations. In a total synthesis of (+)-methyl pseudomonate C from carbohydrate precursors, a copper-catalyzed ring opening of epoxide **178** with the Grignard reagent **179** formed from the corresponding allylic chloride is utilized (Eq. 156). (565) The realization

of product **180**, via **179**, represents one of the rare successful uses of an unbiased, substituted allylic magnesio (or lithio) cuprate. Many remarkable features of this coupling were noted, including (1) the regiochemistry of oxirane cleavage is cleanly derived from *trans*-diaxial attack of the reagent; (2) the site specificity of coupling in the "normal" (α -), rather than "rearranged" (γ -) mode by the allylic cuprate; and (3) the maintenance of *E* double-bond geometry.

The construction of the biphenyl-containing lignan steganacin **184**, isolated from *Steganotaenia araliacea* and found to have antileukemic properties, relies on an intermolecular, ambient-temperature Ullmann coupling which proceeds by way of an internal ligand-stabilized arylcopper species **181**. (566) Treatment of the precursor bromide with *n*-butyllithium followed by the copper(I) iodide-triethylphosphite complex forms the organocopper reagent **181**. Introduction of the iodoimine **182** at -78° gives upon warming to room temperature and hydrolysis the product biaryl **183**, presumed to arise by way of a Cu(III) intermediate (Scheme 28). Scheme **28**.

Several other uncategorized examples of natural product syntheses which rely on copper reagents are shown in Table XI-F.

4. Experimental Procedures

4.1.1.1. 1,3-Dimethoxy-5-(n-pentyl)benzene ("Olivetol Dimethyl Ether") (Dilithium-tetrachlorocuprate-Catalyzed Coupling of a Grignard with an Alkyl Halide) (567)

Under dry nitrogen, 5-chloro-1,3-dimethoxybenzene (40 g, 0.23 mol), magnesium (6 g, 0.25 mol) and a small amount of 1,2-dibromoethane in tetrahydrofuran (80 mL) were heated under reflux for 6 hours. The solution was cooled in ice and a mixture of 1-iodopentane (42.6 mL, 0.325 mol) and dilithiumtetrachlorocuprate (30 mL of a 0.2 M solution in tetrahydrofuran, 6 mmol) was added dropwise over a period of 30 minutes. The resulting black mixture was stirred at 0° for 90 minutes and at 20° for an additional 16 hours. The almost solid reaction mixture was acidified with 6 N hydrochloric acid (160 mL) and extracted with ether (2 × 200 mL). The organic extract was washed with 15% aqueous ammonia (60 mL) and water (60 mL), dried with magnesium sulfate, and evaporated in vacuo. According to the ¹H NMR spectrum of the residual product, olivetol dimethyl ether was formed in 74% yield. Distillation afforded the pure product (31.9 g, 66%) as a colorless liquid, bp 152–156° (12 mm).

4.1.1.2. trans-2-Phenylcyclohexanol [Copper(I) lodide-Catalyzed Opening of an Epoxide with a Grignard] (568)

To 10.9 g (0.45 mol) of magnesium in 100 mL of tetrahydrofuran was added 73.0 g (0.465 mol) of bromobenzene in 100 mL of tetrahydrofuran over 1 hour. The resulting mixture was stirred for 30 minutes and then 8.85 g (46.5 mmol) of cuprous iodide was added and the mixture cooled to -30°. A solution of 29.45 g (0.30 mol) of cyclohexene oxide in 50 mL of tetrahydrofuran was then added dropwise. After the addition was complete, the mixture was stirred for 3 hours and then quenched by being poured into 100 mL of cold saturated aqueous ammonium chloride solution. The solution was extracted with ether and the organic layers were combined, dried, and concentrated to afford a liquid that was distilled at 80° (0.23 mm) to afford 43.1 g (81%) of a yellow solid which was recrystallized from pentane, mp 56.5 - 57.0°; IR: 3592, 3461, 2941, 2863, 1604, 1497, 1451 cm⁻¹; ¹H NMR (361 MHz) δ : 7.35–7.17 (m, 5H), 3.64 (ddd, 1H, J = 5.4, 10.8, 10.8 Hz), 2.42 (ddd, 1H, J = 5.4, 10.8, 16.5 Hz), 2.11 (m, 1H), 1.84 (m, 2H), 1.76 (m, 1H), 1.62 (s, 1H), 1.53–1.25 (br m, 4H); ¹³C NMR (90 MHz) δ : 143.4 (s), 128.7 (d), 127.9 (d), 126.7 (d), 74.3 (d), 53.3 (d), 34.6 (t), 33.4 (t), 26.1 (t), 25.1 (t); mass spectrum, m/z: 176(M⁺), 158, 143, 130, 117, 104, 91 (base).

4.1.1.3. n-Heptanoic Acid [Copper(I) Chloride-Catalyzed Opening of a Lactone with a Grignard] (166)

n-Butylmagnesium bromide (1 M in ether, 2.4 ml, 2.4 mmol) was slowly added to a suspension of cuprous chloride (4 mg, 0.04 mmol) in 6 mL of

tetrahydrofuran at 0° under argon. β -Propiolactone (0.144 g, 2 mmol) in 2 mL of tetrahydrofuran was next added dropwise. The mixture was stirred at 0° for 15 minutes and quenched by adding 3 N hydrochloric acid solution. From the organic layer, heptanoic acid was extracted with 3 N sodium hydroxide solution. The alkaline solution was acidified, extracted with ether, and concentrated to give pure heptanoic acid in 90% yield; bp 65° (1.0 mm).

4.1.1.4. 3-(2-Methylpent-2-en-5-yl)]furan ("Perillene") (Dilithiumtetrachlorocuprate-Catalyzed Coupling of an Allylic Halide with a

Grignard) (99)

To 0.104 g (4.29 mmol) of magnesium turnings covered with 3 mL of tetrahydrofuran under argon was added 0.5 g (4.29 mmol) of 3-chloromethylfuran in 2 mL of tetrahydrofuran in one portion. The mixture was allowed to stir for 30 minutes at room temperature, then warmed in a preheated 50° oil bath for 30 minutes to provide a golden-yellow solution. The solution was chilled in an ice-water bath and 0.448 g (4.29 mmol) of freshly distilled 1-chloro-3-methyl-2-butene in 2 mL of tetrahydrofuran was added in one portion followed immediately by the addition of 0.15 mL of a 0.1 M solution of dilithiumtetrachlorocuprate in tetrahydrofuran. The resulting black suspension was stirred for 5 minutes at 0°, poured into petroleum ether (50 mL), washed with 5% aqueous sodium bicarbonate solution (50 mL) and water (50 mL), and dried over sodium sulfate. Concentration in vacuo provided a pale yellow liquid which was purified by bulb-to-bulb distillation to give 0.547 g (85%) of perillene as a colorless liquid, bp 80° (20 mm).

4.1.1.5. trans-3-n-Butyl-1-deuterio-5-methylcyclohexene [Copper(I) Cyanide-Catalyzed Substitution of an Allylic Mesitoate with a Grignard] 62a A flask equipped with a magnetic stirrer and septum was charged with 54 mg (0.6 mmol) of cuprous cyanide. After flushing with dry nitrogen, 2 mL of anhydrous ether was added and the suspension was chilled to -10° . An ether solution of *n*-butylmagnesium bromide (6 mmol, prepared from 987 mg of

1-bromobutane and 146 mg of magnesium in 8 mL of ether) was added through a cannula, and after stirring the mixture for 10 minutes, a solution of 778 mg (3 mmol) of α -deuterio-*cis*-5-methyl-2-cyclohexenyl mesitoate in 2 mL of ether was added. The cooling bath was removed and the mixture stirred at room temperature for 6.5 hours, after which it was quenched with 2 mL of aqueous ammonium chloride solution. The resulting mixture was filtered, the precipitate washed with ether, and the ether solution dried over magnesium sulfate. Removal of solvent by fractionation followed by column chromatography (silica gel, pentane/ether) and vacuum distillation gave 289 mg (63% yield) of a clear mobile oil, bp 58–60° (7.4 mm); IR (neat): 3020, 2945, 2910, 2900, 2860, 2840, 2820, 2240, 1640, 1465, 1455, 1430, 1375, 895, 730, 710 cm⁻¹; ¹H NMR (CDCl₃) δ : 5.63 (br s, 1H), 2.20–1.90 (br m, 2H), 1.90–1.68 (br m, 1H), 1.68–1.50 (m, 9H), 1.05–0.70 (m, 3H), 0.93 (d, 3H, J = 7.5 Hz); high-resolution mass spectrum, calculated for C₁₁H₁₉D m/e 153.1622, found m/e 153.1628.

4.1.1.6. 3-[3-(1,3-Dioxolan-2-yl)propyl]cyclohexanone [Copper(I) Bromide-Catalyzed Conjugate Addition of a Grignard to an α , β -Unsaturated Ketone] (143)

Magnesium turnings (0.60 g, 25 mmol) were ground for a few minutes with a mortar and pestle and were immediately placed into a nitrogen-filled flask. A solution of 2-(3-chloropropyl)-1,3-dioxolane (1.2 mL, 8.3 mmol), 1,2-dibromoethane (0.05 mL), and tetrahydrofuran (1.6 mL) was added at 25°, and the mixture was stirred in a 70°-bath at which temperature the reaction began. The reaction flask was then placed in a 25° bath and stirred for 30 minutes, diluted with additional tetrahydrofuran (5 mL), stirred for 1.25 hours, and cooled to -78°. A solution of cuprous bromide-dimethyl sulfide complex (0.41 g, 2.0 mmol) and dimethyl sulfide (4 mL) was then added dropwise and the mixture was stirred at -78° for 1 hour. A solution of cyclohexenone (0.65 mL, 6.8 mmol) and ether (7 mL) was then introduced dropwise over a 7 minute period, and the mixture stirred at -78° for 2.5 hours and then warmed in an ice-water bath. After being stirred at 0° for 5 minutes, the mixture was quenched by the addition of a saturated aqueous solution (5 mL) of ammonium chloride (adjusted to pH 8 with aqueous ammonia) and stirred at 25° for 1.5 hours. The dark-blue aqueous layer was removed, the ether layer washed with two additional 10-mL portions of water and a saturated aqueous solution (15 mL) of sodium chloride, and dried over magnesium sulfate. Concentration by rotary evaporation gave 1.28 g of the crude product, which was purified by flash chromatography (silica gel, 1:1 hexanes/ethyl acetate) to give 1.05 g (75%) of the product as a colorless oil. The analytical sample was obtained by bulb-to-bulb distillation [oven temperature 80° (0.2 mm)]; IR (neat): 2950, 1712 cm⁻¹; ¹H NMR (CDCl₃) δ : 4.83 (t, 1H, J = 4.8 Hz), 3.90 (m, 4H), 1.15–2.55 (m, 15H); Anal. Calcd for C₁₂H₂₀O₃: C, 67.89; H, 9.50. Found: C, 67.76; H, 9.53%.

4.1.1.7. 1-Trimethylsilyloxynon-1-ene [Copper(I) Bromide-Catalyzed Conjugate Addition of a Grignard to an α , β -Unsaturated Aldehyde in the Presence of Chlorotrimethylsilane and Hexamethylphosphoric Triamide] (157) To a cooled (–78°) tetrahydrofuran solution (60 mL) of *n*-hexylmagnesium bromide (prepared from 35 mmol of 1-bromohexane and 37.5 mmol of magnesium in 85–90% yield), hexamethylphosphoric triamide (10.5 mL, 60 mmol) [CAUTION: Potent Carcinogen], and cuprous bromide–dimethyl sulfide complex (257 mg, 1.25 mmol) was added dropwise a mixture of acrolein (1.67 mL, 25 mmol) and chlorotrimethylsilane (6.4 mL, 50 mmol) in 20 mL of tetrahydrofuran over 30 minutes. After 3 hours, triethylamine (7 mL) and hexane (100 mL) were added. The organic layer was washed with water to remove hexamethylphosphoric triamide and dried over magnesium sulfate. The product (3.86 g, 83%; 94% *E* by GLC analysis) was obtained by distillation (74°, 1 mm).

4.1.1.8. 4-Methylbenzophenone (Substitution of an Aroyl Halide with Arylmethylcoppermagnesium Bromide) (163)

In a 1-L, flame-dried, three-necked, round-bottomed flask equipped with an overhead stirrer and low-temperature thermometer, a bright yellow suspension of methylcopper was prepared by the reaction 30 mL of a 1.73 M (51.9 mmol) ether solution of methyllithium (0.11 M in residual base) with a -78° suspension of 9.6 g (50.8 mmol) of cuprous iodide in 100 mL of tetrahydrofuran. The bright yellow color characteristic of methylcopper formed when this reaction mixture was warmed to 25°. It was then cooled to -70° and 26 mL of a 1.96 M (51.0 mmol) ether solution of 4-methylphenylmagnesium bromide was added with a syringe. The resulting suspension was allowed to warm to 25° and after cooling the deep purple solution to -78° , a solution of benzoyl chloride (13.0 mL, 112 mmol) in tetrahydrofuran (30 mL) was added dropwise by syringe. The reaction mixture was then warmed to 25° and allowed to stir for 30 minutes. It was guenched with 8 mL of absolute methanol and then added to 600 mL of saturated aqueous ammonium chloride solution. Stirring for 2 hours dissolved the copper salts, the ethereal phase was separated, and the aqueous portion was washed with two 100-mL portions of ether. The combined organic fractions were washed once with 100 mL of 0.1 N aqueous sodium thiosulfate, three times with 100 mL of 1.0 N sodium hydroxide, and once with 200 mL of saturated sodium chloride, and then dried over potassium carbonate. The product 4-methylbenzophenone was isolated by distillation (7.8 g, 79% yield), bp 120–130° (0.6 mm); IR (methylene chloride) 1670 cm⁻¹; ¹H NMR (CDCl₃) δ : 7.1–7.9 (m, 9H), 2.4 (s, 3H).

4.1.1.9. trans-4-Methyl-2-cyclopentene-1-acetic Acid [Stoichiometric Copper(I) Bromide-Mediated $S_N 2 \phi$ Opening of a Vinyllactone with a Grignard] (174) To a solution of cuprous bromide–dimethyl sulfide complex (71.0 g, 0.35 mol) in dimethyl sulfide (300 mL) and tetrahydrofuran (700 mL) at -20° was added methylmagnesium bromide (125 mL, 2.85 M in tetrahydrofuran, 0.35 mol). After stirring at -20° for 1 hour, a solution of 2H-cyclopenta[b]furan-2-one (21.5 g, 0.18 mol) in tetrahydrofuran (200 mL) was added dropwise via an addition funnel. The mixture was stirred at -20° for 5 hours, poured into 1 N sodium hydroxide solution, and stirred for 2 hours. The organic layer was separated and the aqueous layer was acidified to pH ~ 2 with 1 N hydrochloric acid. After extraction with ether, the organic phase was washed with water and brine, dried over magnesium sulfate, and concentrated in vacuo to provide a yellow oil (23.65 g, 97.6%). This was characterized as its methyl ester (prepared by standard diazomethane treatment); IR (CHCl₃): 1730 cm⁻¹; ¹H NMR (CDCl₃) δ : 5.65 (m, 2H), 3.65 (s, 3H), 3.14 (br m, 1H), 2.80 (br m, 1H), 2.30 (AB portion of ABX, 2H), 1.67 (m, 2H), 0.97 (d, 3H); Anal. Calcd for C₉H₁₄O₂: C, 70.10; H, 9.15. Found: C, 70.01, H, 9.19%.

4.1.1.10. 3-Methoxy-17-[(1 β -methyl)ethan-1,2-dien-2-yl]-1,3,5(10)-estratriene [Stoichiometric Copper(I) Bromide-Mediated Substitution of a Propargylic Steroidal Sulfinate with a Grignard] (185)

A solution of methylmagnesium chloride (0.03 mol) in tetrahydrofuran (30 mL) was added cautiously to a stirred suspension of cuprous bromide (0.03 mol) in tetrahydrofuran (50 mL) at –50° and stirred at –30° for 30 minutes. 17 α -Ethynyl-17 β -methanesulfinyloxy-3-methoxy-1,3,5(10)-estratriene (5.58 g, 0.015 mol) in tetrahydrofuran (10 mL) was then added at –50° over 10 minutes. The reaction mixture was raised to 20° within 10 minutes. After 45 minutes, it was poured into a saturated solution of ammonium chloride in water (200 mL) containing sodium cyanide (2 g). It was then extracted with hexane (3 × 50 mL) and the combined extracts were washed with water and then dried over magnesium sulfate. Evaporation of solvent in vacuo afforded the product

(4.55 g, 98%) which was recrystallized from ethanol, mp 71.0-71.5°; [a] in

methylene chloride: -16.05°.

4.1.1.11.2-(Trimethylsilylmethyl)hex-1-ene [Copper(I) Bromide-Mediated Carbocupration of an Acetylene with a Grignard in Ether] 222b

To a suspension of cuprous bromide (2.2 g, 15 mmol) and lithium iodide (1 N solution in ether, 20 mL, 20 mmol) in ether (50 mL) was added, at 0°, a solution of trimethylsilylmethylmagnesium chloride (2.90 M in ether, 17 mL, 15 mmol). The mixture first gave a yellow precipitate and then a homogeneous pale green solution which was stirred at -5° for 1 hour. After addition of 1-hexyne (1.0 g, 12.5 mmol), the mixture was allowed to warm to 10°, stirred at this temperature for 18 hours (brown solution) and then hydrolyzed with 100 mL of buffered ammonia solution. The mixture was filtered and decanted; the organic layer was washed with brine (10 mL) and dried over magnesium sulfate. The solvent was evaporated and the residue distilled through a 10-cm Vigreux column to afford 1.8 g (78%) of pure product, bp 70° (10 mm); ¹H NMR (CCl₄) δ : 4.8 (s, 1H), 4.6 (s, 1H), 2.0 (t, 2H), 1.8 (s, 2H), 1.4 (m, 4H), 0.98 (t, 3H), 0.05 (s, 9H). Anal. Calcd for C₁₀H₂₂Si: C, 70.50; H, 13.01. Found: C, 70.40; H, 13.03.

4.1.1.12. (E)-4-Methyl-3-decen-1-ol [Copper(I) Bromide-Mediated Carbocupration of an Acetylene Followed by Opening of an Oxirane with the Derived Vinylcopper] 218b

To a mixture of cuprous bromide–dimethyl sulfide (0.82 g, 4.0 mmol), ether (5 mL), and dimethyl sulfide (4 mL) at –45° under nitrogen was added a 2.90 M solution (1.39 mL, 4.0 mmol) of methylmagnesium bromide in ether over a 2-minute period. After 2 hours, 1-octyne (0.52 mL, 3.5 mmol) was added over 1 minute to the yellow-orange suspension. The mixture was stirred at –23° for 120 hours, and then the resulting dark green solution was cooled to –78°. A solution of 1-lithio-1-pentyne (prepared from 4.0 mmol of *n*-butyllithium and 4.0 mmol of 1-pentyne), ether (5 mL), and hexamethylphosphoric triamide

(1.4 mL, 8.0 mmol) [**Caution: Potent Carcinogen**] was transferred to the green solution. After 1 hour, ethylene oxide (0.21 mL, 4.0 mmol), which had been condensed at –45°, was added with a dry-ice-cooled syringe over a 0.5-minute period. The resulting mixture was stirred at –78° for 2 hours, allowed to stand at –25° for 24 hours, quenched at 0° by addition of an aqueous solution (5 mL) of ammonium chloride (adjusted to pH 8 with ammonia), and then partitioned between ether and water. The crude product (90% pure by GLPC) was purified by column chromatography on silica gel (methylene chloride) to give a colorless oil (0.44 g, 75%); IR (neat): 3300, 1669, 874 cm⁻¹; ¹H NMR $\overline{0}$: 5.05 (t, 1H, *J* = 7 Hz), 3.55 (t, 2H, *J* = 7 Hz), 1.58 (s, 3H), 2.40–0.65 (br m, 16H); high-resolution mass spectrum: m/z calculated for C₁₁H₂₂O, 170.1667; found, 170.1691.

4.1.1.13. (E)-1-Ethoxy-1-phenylpenta-1,4-diene (Lithium Dibromocuprate-Mediated Carbocupration of an Acetylene by a Grignard Followed by Alkylation of the Derived Vinylcopper with an Allylic Halide) (569) To a stirred solution of phenylcopper [prepared in situ by stirring phenylmagnesium bromide (0.01 mol) with 0.01 mol of the tetrahydrofuran-soluble complex lithium dibromocuprate at -50° for 1 hour] in tetrahydrofuran (35 mL) was added 0.01 mol of ethoxyacetylene at -50°. The mixture was then stirred for 1 hour at -20° . Subsequently, allyl bromide (0.01 mol) was added and the mixture stirred for 3 hours. It was then poured into an aqueous ammonium chloride solution (200 mL) containing sodium cyanide (2 g) and extracted with pentane (3 × 50 mL). The combined extracts were washed with water (6 × 100 mL) to remove tetrahydrofuran and dried over magnesium sulfate. The solvent was removed in vacuo and the residue purified by column chromatography eluting with pentane. Because of the instability of the product the chromatography was performed within 2 hours; 96% yield, 95% pure by GLC; IR (neat): 3080, 3060, 1645, 1600, 1495, 1238, 1128, 910, 770, 700 cm⁻¹; ¹H NMR (CCl₄) δ : 7.5–7.1 (m, 5H), 5.82 (m, 1H, J = 6.0, 9.5, 17.5 Hz, 5.07 (br d, 1H, J = 17.5 Hz), 4.98 (br d, 1H, J = 9.5 Hz), 4.70 (t, 1H, *J* = 8.0 Hz), 3.73 (q, 2H, *J* = 7.0 Hz), 2.78 (m, 2H, *J* = 6.0, 8.0 Hz), 1.25 (t, 3H, J = 7.0 Hz); mass spectrum, m/z: 188 (M⁺), 105 (100).

4.1.1.14. 3-Vinyl-2-methyl-1-trimethylsilyloxycyclopentene (Conjugate Addition of Divinylmagnesium Cuprate to an α , β -Unsaturated Ketone and in situ Trapping of the Enolate with Chlorotrimethylsilane) (253)

To magnesium (6.07 g, 250 mmol) and one crystal of iodine in tetrahydrofuran (100 mL) was added vinyl bromide (70.5 mL, 1 mol) in tetrahydrofuran (60 mL) at a rate to maintain the reaction temperature at 45°. After all the magnesium had disappeared, the solution was heated at 45° under a stream of nitrogen to remove excess vinyl bromide. The mixture was then cooled to -5° , cuprous iodide (25.7 g, 135 mmol) added, and the solution stirred until it was jet black. The mixture was quickly chilled to -70° and 2-methylcyclopentenone (10.56 g, 110 mmol) in tetrahydrofuran (40 mL) was added dropwise and the solution

stirred at –40° for 45 minutes. After subsequent cooling to –60°, chlorotrimethylsilane (34 mL, 365 mmol), hexamethylphosphoric triamide (70 mL) [Caution: Potent Carcinogen], and triethylamine (50 mL) were added sequentially. The reaction mixture was allowed to warm to room temperature over a period of 2 hours. Aqueous petroleum ether workup, followed by distillation, gave a colorless liquid (19.19 g, 89%); bp 64–66° (3.1 mm); IR (neat): 2990, 1690, 1640, 1250, 1210, 1090, 990, 840 cm⁻¹; ¹H NMR (CCl₄) δ : 5.70 [overlapping (5 lines) ddd, 1H, *J* = 17.5, 10, 9 Hz), 5.00 (dd, 1H, *J* = 17.5, 2.5 Hz), 4.93 (dd, 1H, *J* = 9, 2.5 Hz), 3.00 (m, 1H), 2.5–1.4 (m, 4H), 1.47 (br s, 3H), 0.22 (s, 9H). Anal. Calcd for C₁₁H₂₀OSi: C, 67.28; H, 10.26. Found: C, 67.04; H, 10.18.

4.1.1.15. 4-tert-Butyldimethylsilyloxy-3-(7-tert-butyldimethylsilyloxyheptyl)cyclo pent-2-en-1-one (Conjugate Addition–Elimination of a β

-Chlorocyclopentenone with a Diorganomagnesium Cuprate) (232) The required Grignard reagent was prepared by adding a solution of 7-bromo-1-(*tert*-butyldimethylsilyloxy)heptane (6.19 g, 20 mmol) in tetrahydrofuran (15 mL), over 1.5 hours to magnesium (491 mg, 20.2 mmol) in refluxing tetrahydrofuran (15 mL). The consumption of magnesium was complete after heating at reflux for a further 3 hours. The concentration of reagent was measured by standard titration of an aliquot (1 mL) after hydrolysis. A suspension of cuprous iodide (78 mg, 0.4 mmol) in tetrahydrofuran (2 mL) containing

3-chloro-4-[tert-butyldimethylsilyloxy]cyclopent-2-en-1-one (100 mg, 0.4 mmol) was stirred vigorously at -10° under argon. Dropwise addition of the above Grignard reagent (0.41 M in tetrahydrofuran, 1.85 mL, 0.76 mmol) produced a green solution which was stirred at -10° for 10 minutes. The reaction was rapidly guenched with saturated aqueous ammonium chloride solution (5 mL). and after addition of ether (5 mL), the mixture was stirred at room temperature for 1 hour before dilution with water (10 mL) and extraction with ether $(5 \times 10 \text{ mL})$. The combined extracts were washed with brine $(2 \times 5 \text{ mL})$, dried over magnesium sulfate and evaporated. Preparative thin-layer chromatography [silica gel, methylene chloride/methanol (50:1, v/v)] gave the product as a colorless oil (167 mg, 95%), bp (Kugelrohr) 135° at 0.2 mm; IR: 1720 cm⁻¹; ¹H NMR δ : 0.04 (s, 6H), 0.12 (s, 3H), 0.14 (s, 3H), 0.88 (s, 9H), 0.91 (s, 9H), 1.16–1.80 (m, 10H), 2.25 (dd, 1H, J = 18.0, 3.0 Hz), 2.44 (br t, 2H, J = 8 Hz), 2.72 (dd, 1H, J = 18.0, 6.0 Hz), 3.60 (t, 2H, J = 6.0 Hz), 4.76 (dd, 1H, J = 6.0, 3.0 Hz), 5.90 (m, 1H); Anal. Calcd for C₂₄H₄₈O₃Si₂: C, 65.40; H, 11.0. Found: C, 65.65; H, 10.8.

4.1.1.16. 1,4-Diphenyl-2,3-O-isopropylidene-L-threitol (Substitution of an Alkyl Tosylate with Lithium Diphenylcuprate) (570)

To a solution of 3.0 g of cuprous iodide in 10 mL of dry ether, stirred at 0° under dry argon, was added dropwise 20 mL of 2.1 M phenyllithium solution in 75% benzene/25% hexane. A solution of 1.93 g of

2,3-*O*-isopropylidene-L-threitol ditosylate in 12 mL of ether and 3 mL of tetrahydrofuran was added dropwise to the resulting green solution and the mixture was stirred at 25° for 2 hours. Saturated aqueous ammonium chloride was added and the volatile solvents were removed under reduced pressure. The aqueous residue was extracted with several portions of ether, and the extracts were washed with saturated brine solution, dried, and concentrated. The yellow oily residue was chromatographed on 20 g of silica gel, eluting first with hexane to remove biphenyl, then with hexane–ethyl acetate (3:1) to elute the product. Distillation at 140° (0.1 mm) yielded 650 mg (47%) of the colorless product; IR (neat): 3080, 3060, 3010, 2940, 2880, 1620, 1500, 1460, 1380, 1370, 1240, 1215, 1160, 1075, 1050, 750, 695 cm⁻¹; ¹H NMR (CDCl₃) \overline{o} : 1.4 (s, 6H), 2.8 (m, 4H), 4.0 (m, 2H), 7.25 (s, 10H).

4.1.1.17. 1-Chloro-4-cyclopropylbutane (Selective Coupling of a Dihaloalkane with Lithium Dicyclopropylcuprate) (281)

A solution of 1:1 M cyclopropyllithium in ether (660 mL) was added over 45 minutes at -35° to a slurry of 73 g (0.38 mol) of cuprous iodide in 660 mL of tetrahydrofuran. After a Gilman test was negative, 1-bromo-4-chlorobutane (54 g, 0.32 mol) was rapidly added to the mixture which was held at -35° for 1.5 hours. Aqueous saturated ammonium sulfate was then added and the mixture was filtered. The product was extracted with 2 L of ether–pentane (1:1). The organic layer was washed several times with water, then with brine. After drying over calcium sulfate, the extract was distilled through a 45-cm Vigreux column to remove solvents. The pot residue was then short-path distilled to yield 37.4 g (90%) of the product, bp 58–59° (17 mm); IR (neat): 3084, 3008, 2941, 2864, 1024 cm⁻¹; ¹H NMR (CCl₄) δ : 3.48 (t, 2H, *J* = 6 Hz); mass spectrum (70 ev): m/z 55 (base).

4.1.1.18. 1-(2-Deuterio-1-phenylethenyl)naphthalene (Substitution of a Vinyl Bromide with Lithium Diphenylcuprate) (571)

Lithium diphenylcuprate was prepared at 0° by slowly adding 25 mL of 1.86 M (46.5 mmol) phenyllithium solution to a suspension of 5.03 g (24.4 mmol) of cuprous bromide–dimethyl sulfide complex in 20 mL of dry ether. A yellow precipitate formed initially which changed to a homogeneous green solution after complete addition. After 40 minutes at 0°, a solution of 1.36 g (5.81 mmol) of 1-(1-bromo-2-deuterioethenyl)naphthalene (E:Z = 4.1) in 3 mL of dry ether was then added. After 4.5 hours at 0°, the reaction mixture was poured into aqueous saturated ammonium chloride solution (pH 9 by addition of ammonium hydroxide), and this was stirred for 1.5 hours. The ether layer was separated, washed twice with brine, and then dried. Removal of solvent afforded a light yellow oil which was purified by short-path distillation, collecting the fraction with bp 124–134° (1 mm). The yield was 0.80 g (60%) of the product which was crystallized from methanol, mp 57.5–58.5°; ¹H NMR (CDCl₃) δ : 5.36 (s, 0.2H), 5.93 (s, 0.8H), 6.8–7.9 (m, 12H); the Z isomer predominated 4:1.

4.1.1.19. 4-tert-Butyl-1-methylcyclohexene (Substitution of a Vinyl Trifluoromethanesulfonate with Lithium Dimethylcuprate) (286)

A solution of 2.0 M methyllithium in hexane (5.5 mL, 10.8 mmol) was added to a stirred slurry of cuprous iodide (1.43 g, 7.5 mmol) in 15 mL of tetrahydrofuran at 0°. A solution of 1-trifluoromethanesulfonyloxy-4-*tert*-butylcyclohexene in 5 mL of tetrahydrofuran was added, and the reaction mixture was stirred at –15° for 12 hours. It was then diluted with hexane, filtered through a pad of Florisil, and concentrated on the rotary evaporator. Chromatography of the residue on silica gel provided the product (250 mg, 75%); ¹H NMR (CDCl₃) δ : 5.38 (m, 1H), 1.87 (m, 4H), 1.63 (s, 3H), 1.25 (m, 3H), 0.84 (s, 9H).

4.1.1.20. Methyl

c-6-Benzyloxy-*t*-2-hydroxy-1,*c*-3-dimethylcyclohexane-*r*-1-carboxylate (Opening of an Epoxide with Lithium Dimethylcuprate) (572) To a solution of lithium dimethylcuprate (from 6.4 mL of 0.75 M methyllithium and 490 mg of cuprous iodide) in ether under nitrogen at 0° was added methyl *c*-6-benzyloxy-*t*-2,3-epoxy-1-methylcyclohexane-*r*-1-carboxylate in ether and the mixture was stirred at 20° for 18 hours. Addition of saturated aqueous ammonium chloride and extraction with ether gave the product as a colorless oil (125 mg, 85%); IR (film): 3560, 1720, 1270, 1060 cm⁻¹; ¹H NMR (CDCl₃) δ : 1.05 (d, 3H, *J* = 6 Hz), 1.20 (s, 3H), 1.46–1.89 (m, 5H), 2.99 (d, 1H, *J* = 2.9 Hz), 3.64 (s, 3H), 3.87 (m, 1H), 3.98 (dd, 1H, *J* = 2.9, 10.7 Hz), 4.28 (d, 1H, *J* = 11.7 Hz), 4.52 (d, 1H, *J* = 11.7 Hz), 7.28 (m, 5H).

4.1.1.21. 1-Hydroxymethyl-2-isopropyl-3-methylcyclohexene ($S_N 2 \phi$ Substitution of a Vinyl Epoxide with Lithium Dimethylcuprate) (573)

To a stirred suspension of 2.8 g (15.0 mmol) of cuprous iodide in 45 mL of dry ether cooled to 0° was added dropwise 16.5 mL (30.0 mmol) of methyllithium. After 5 minutes, 850 mg (5.6 mmol) of

cis-(E)-1-epoxy-2-ethylidene-3-methylcyclohexane was added in 9 mL of ether. After being stirred at 0° for 30 minutes, the reaction mixture was poured into saturated aqueous ammonium chloride solution containing ammonium hydroxide (pH 9). After the mixture was stirred for 10 minutes, the layers were separated, the aqueous layer was extracted with ether, and the organic layers were combined, washed with water, dried, and concentrated *in vacuo*. The residue was distilled (Kugelrohr) to give 810 mg (86%) of the product as a colorless oil, bp 60° (0.02 mm); IR (CCl₄): 3615, 3572–3200 cm⁻¹; ¹H NMR (CDCl₃) δ : 4.11 (M, 2H), 2.79 (septet, 1H, *J* = 7 Hz), 2.30 (m, 1H), 2.10 (m, 2H), 1.73–1.36 (br m, 5H), 1.09–1.04 (br m, 9H); ¹³C NMR (CDCl₃) δ : 144.42, 129.03, 62.59, 31.03, 30.37, 29.38, 27.83, 22.99, 21.33, 20.91, 17.60; Anal. Calcd for C₁₁H₂₀O: C, 78.51; H, 11.98. Found: C, 78.36; H, 12.01.

4.1.1.22. (S)-(+)-1,3-Di-n-butylallene (Substitution of a Propargylic Carbamate with Lithium Dibutylcuprate) (340)

To a solution of lithium dibutylcuprate (3.5 mmol) in ether (15 mL), at -78° was added an ethereal solution (25 mL) of 1.04 g (3.5 mmol) of (*R*,*R*)-3-[*N*-2-(1-naphthyl)ethylcarbamyloxy]hept-1-yne over 10 minutes. After being stirred for an additional 7 hours at -78° , it was allowed to come to 0°, quenched with aqueous saturated ammonium chloride solution (20 mL), and stirred for 15 minutes. The mixture was filtered and the organic layer was separated, washed with aqueous saturated ammonium chloride solution (20 mL), dried over magnesium sulfate, and concentrated under reduced pressure. Molecular distillation of the residue afforded 0.4 g (76%) of the

product; $\left[\alpha_{1D}^{25} + 54.5^{\circ}(3.6, \text{CHCl}_{3}); \text{ IR (film): 1945 cm}^{-1}; {}^{1}\text{H NMR(CCl}_{4}) \delta : 0.9 (t, t)\right]$

6H), 1.3 (m, 8H), 1.95 (m, 4H), 4.95 (quintet, 2H).

4.1.1.23. 2-Methyl-6-(3-oxobutyl)cyclohexanone Dimethylhydrazone (Conjugate Addition of the Cuprate Derived from an α -Lithiocyclohexanone Dimethylhydrazone to an α , β -Unsaturated Ketone) 357b A precooled (ca. - 30°) clear solution of 0.96 g (5 mmol) of cuprous iodide in 2.88 mL (20 mmol) of diisopropyl sulfide and 10 mL of tetrahydrofuran was added dropwise with stirring at -78° to a suspension of 6-lithio-2-methylcyclohexanone dimethylhydrazone [5 mmol, generated from 1.54 g (10 mmol) of 2-methylcyclohexanone dimethylhydrazone and lithium diisopropylamide (10 mmol)] in 40 mL of tetrahydrofuran. The lithium compound dissolved during warming of the orange reaction mixture from -78° to -20° over 30 minutes and from -20° to 0° over 10 minutes, resulting in a clear golden yellow solution. It was cooled again to -78°, and 0.41 mL (5 mmol) of methyl vinyl ketone was added dropwise. After 2 hours, the reaction was slowly warmed to room temperature over a period of 12 hours. The black-brown reaction mixture was poured into a mixture of saturated ammonium chloride containing ammonium hydroxide (pH 8) and repeatedly extracted with methylene chloride. The organic phase was shaken several times with ammonium chloride-ammonium hydroxide solution until the aqueous phase was no longer blue. The combined aqueous phase was again extracted with methylene chloride, and the combined organic phases were then dried over sodium sulfate. After removal of the solvent in a rotary evaporator, the crude product (1.19 g, spectroscopic yield 100%) was purified by distillation to give 0.42 g (85%) of a light-yellow oil, bp 100° (0.05 mm).

4.1.1.24. 3-(cis-2-Ethoxyethenyl)cyclohexanone [Conjugate Addition of Lithium Di-(cis-2-ethoxyethenyl)cuprate to an α , β -Unsaturated Ketone] (574) A solution of cis-2-ethoxyvinyllithium was prepared from 2.18 g (6.04 mmol) of cis-1-ethoxy-2-tri-*n*-butylstannylethylene and *n*-butyllithium (1.1 equivalent) in 15 mL of tetrahydrofuran at -78° over 1 hour. A solution of 0.577 g (3.03 mmol) of purified cuprous iodide and 0.89 mL (12.1 mmol) of dimethyl sulfide in 5 mL of tetrahydrofuran was then added over 5 minutes. After stirring for 1 hour at -78°, 0.264 g (2.75 mmol) of cyclohexenone in 5 mL of tetrahydrofuran was added over 10 minutes. After stirring for 1 hour, the mixture was warmed to -40° during 30 minutes, quenched with aqueous 20% ammonium chloride solution, and extracted with ether. The product was purified by column chromatography (silica gel, chloroform) to afford 0.379 g (82%) of the desired product; IR (film): 1715, 1668, 1125 cm⁻¹; ¹H NMR δ : 5.93 (d, 1H, *J* = 6 Hz), 4.28 (dd, 1H, *J* = 6, 9 Hz), 3.78 (q, 2H, *J* = 7 Hz), 1.42–3.30 (br m, 9H), 1.22 (t, 3H, *J* = 7 Hz); Anal. Calcd for C₁₀H₁₆O₂; C, 71.39; H, 9.59. Found: C, 71.78; H, 9.79.

4.1.1.25. 3-Dimethylphenylsilyl-3,5,5-trimethylcyclohexanone [Conjugate Addition of Lithium Di-(dimethylphenylsilyl)cuprate to an α , β -Unsaturated Ketone] (575)

Dimethylphenylchlorosilane (3.4 g, 2 mmol), lithium shot (100 mg, 14 mmol), and dry tetrahydrofuran (35 mL) were stirred under nitrogen for 18 hours. The resulting red solution was titrated to determine its concentration and used without further purification. A tetrahydrofuran solution of the above reagent (1 mmol) was added to cuprous iodide (95 mg, 0.5 mmol) at -23° under nitrogen and the mixture stirred at this temperature for 4 hours. Then 3,5,5-trimethylcyclohexenone (0.5 mmol) was added, and the mixture was stirred at -23° for a further 30 minutes, poured onto a mixture of ice (25 g) and hydrochloric acid (5 mL), and extracted with chloroform (3 × 25 mL). The extracts were filtered and washed with 3 M hydrochloric acid (25 mL), water (25 mL), saturated sodium hydrogen carbonate solution (25 mL), and water (25 mL) and dried over sodium sulfate. Evaporation in vacuo followed by preparative TLC [silica gel, ether/light petroleum (3:7), Rf value 0.4] gave the product (68% yield) as prisms (from ethanol), mp 60°; IR (CCl_4): 1710 (C = O) cm⁻¹; ¹H NMR (CCl₄) δ : 7.6–7.3 (m, 5H), 2.5–1.3 (m, 6H), 1.16 (s, 3H), 1.10 (s, 3H), 1.05 (s, 3H), 0.38 (s, 6H); mass spectrum: m/z 274 (10, M⁺), 273 (10), 259 (100), 135 (60).

4.1.1.26. Methyl 3-Phenylbutanoate [Conjugate Addition of Lithium Methyl(2-thienyl)cuprate to an α , β -Unsaturated Ester in the Presence of Chlorotrimethylsilane] 78a

n-Butyllithium (2.5 mmol) was added to a solution of thiophene (3 mmol) in ether (5 mL) at 0° and the solution was warmed to and stirred at room temperature for at least 40 minutes. Then another 2.5 mL of ether was added, the mixture was cooled in an ice bath, and finally powdered cuprous iodide (2.5 mmol) was added. Then the mixture was stirred until the Gilman test for free alkyllithium was negative (about 5 minutes). The color of the cuprate solution was either yellow or light green. The reaction mixture was then cooled to about –50° and methyl cinnamate (2 mmol) in ether (2.5 mL) was added. The addition resulted in a shiny yellow color. Within 1 minute from the substrate addition, chlorotrimethylsilane (5 mmol) was added. The temperature was allowed to rise to 0° and the reaction was followed by GLC. The reaction mixture was hydrolyzed by addition of aqueous ammonium

chloride–aqueous ammonia mixture (pH 8) and extracted with ether. The crude product dissolved in pentane was chromatographed through silica gel in order to remove trimethylsilylthiophene and was then eluted with ether to obtain 0.268 g (75%) of the product; bp 133–135° (22 mm).

4.1.1.27. (SR,1S,2R,2¢S)-N-(1-Methoxy-1-phenyl-2-propyl)-S-phenyl-S-(2¢-m ethyl-1¢-hexyl)sulfoximine (Asymmetric Conjugate Addition of Methylcopper to a Chiral Vinyl Sulfoximine) (452)

To a stirred suspension of cuprous iodide (486 mg, 2.56 mmol) in ether (12.8 mL) at -25° was added methyllithium (2.56 mmol). After 30 minutes, (SR,1S,2R)-N-(1-methoxy-1-phenyl-2-propyl)-S-(1-hexenly)-S-phenylsulfoximi ne (190 mg, 0.511 mmol) in ether (2 mL) was added, and the mixture was stirred at -25° for 1 hour. It was then allowed to warm to 0° over a period of 1 hour and after an additional 1 hour at 0°, the reaction was quenched with aqueous ammonium chloride (20 mL). The layers were separated and the ether layer dried and concentrated. Analysis of the crude reaction mixture by HPLC indicated two compounds with retention volumes 2.9 and 3.4 in a ratio of 3.5 to 96.5, respectively. Purification of the crude material by preparative TLC [ethyl acetate/hexane (2.3)] gave the product as a colorless oil; ¹H NMR δ : 7.70–7.01 (m, 10H), 3.90 (d, 1H, J = 7.6 Hz); 3.32–2.89 (m, 2H), 3.20 (s, 3H), 2.73 (dd, 1H, J = 7.6, 14.2 Hz), 2.02 (m, 1H), 1.54–1.0 (m, 6H), 1.32 (d, 3H, J = 5.9 Hz), 0.86 (t, 3H), 0.77 (d, 3H, J = 6.8 Hz); ¹³C NMR δ : 141.22, 138.86, 131.95, 129.15, 128.76, 128.13, 127.62, 127.08, 89.24, 63.45, 57.11, 56.13, 36.35, 28.47, 28.28, 22.51, 21.83, 19.89, 13.95; mass spectrum (chemical ionization, methane): m/e 388 (18, M⁺ + 1), 356 (22), 266 (79), 125 (100).

4.1.1.28. 3-[(E)-3-(Tetrahydropyran-2-yloxy)-1-octenyl]cyclopentanone (Conjugate Addition of an Organocopper to an α , β -Unsaturated Ketone in the Presence of Tri-n-butylphosphine) (468)

Cuprous iodide (300 mg, 1.57 mmol) was placed in a 180-mL ampule equipped with a rubber septum. After the atmosphere was replaced by argon, dry tetrahydrofuran (20 mL) followed by tri-n-butylphosphine (1.02 mL, 4.10 mmol) were added at room temperature. The suspension was stirred until a clear solution resulted. In a 30-mL test tube equipped with a rubber septum were placed (E)-1-iodo-3-tetrahydropyranyloxyoctene (528 mg, 1.56 mmol) and dry ether (6 mL). After cooling to -95°, tert-butyllithium (1.68 mL, 3.12 mmol) in pentane was added to this solution with stirring over 1 minute. The mixture was stirred at -78° for 2 hours. The resulting white suspension was added at -78°, with stirring, to the above prepared ethereal solution of the cuprous iodide-phosphine complex through a stainless-steel cannula under a slight argon pressure. After the mixture was stirred at -78° for 10 minutes, to this solution was then added slowly, along the cooled wall of the reaction vessel, a solution of cyclopentenone (103 mg, 1.25 mmol) in cold (-78°) tetrahydrofuran (10 mL) through a stainless-steel cannula under a slight argon pressure over 50 minutes. The mixture was stirred at -78° for 1 hour. A

saturated aqueous solution of ammonium chloride (15 mL) was added at -78° and the mixture shaken vigorously. The organic layer was separated and the aqueous layer extracted with ether (30 mL). The combined extracts were dried over magnesium sulfate, evaporated, and chromatographed on triethylamine-treated silica gel (30 g) using 2000:100:1 hexane–ethyl acetate–triethylamine mixture as eluent to give the 1, 4 adduct (310 mg, 84%, mixture of diastereomers) as a colorless oil; IR (neat): 1741 (C = O)cm⁻¹; ¹H NMR (CCl₄) δ : 0.90 (t, 3H, *J* = 6.5 Hz), 1.1–3.1 (m, 21H), 3.3–3.7 (m, 1H), 3.7–4.2 (m, 2H), 4.65 (br s, 1H), 5.2–5.8 (m, 2H); mass spectrum, m/z calculated for C₁₃H₁₉O₃(M⁺ – C₅H₁₁): 223.13464. Found 223.13404.

4.1.1.29. (2S-(–)-Benzyl 2-Hydroxypent-4-enyl Ether [Opening of a Chiral Epoxide with Dilithium (2-Thienyl)vinylcyanocuprate] 496b

Thiophene (88 µL, 1.1 mmole) was added to tetrahydrofuran (1 mL), at -78°, followed by *n*-butyllithium (0.39 mL, 1.1 mmol). The cooling bath was removed and the temperature raised to 0° over 5 minutes and stirred for an additional 30 minutes. The faint yellow anion was then transferred via cannula into a two-neck flask containing cuprous cyanide (89.6 mg, 1 mmol) and tetrahydrofuran (1 mL), which was previously purged with argon and cooled to -78°. Warming to 0° produced a light tan solution which was cooled to -78° and vinyllithium (0.5 mL, 1 mmol) was injected, with immediate warming to 0° (no visible change). It was then cooled to -78° and to it was added via cannula a precooled solution of (2S)-benzyl 2-epoxypropyl ether (149 mg, 0.91 mmol) in tetrahydrofuran (1 mL). After 2.5 hours at 0°, the reaction was quenched with 5 mL of a 90% saturated ammonium chloride-concentrated ammonium hydroxide solution, extracted with ether (2 × 10 mL) and dried over sodium sulfate. Concentration, followed by chromatography on silica gel (230-400 mesh) with ether/Skelly Solve (2:3) afforded 141 mg (92%) of a clear liquid, bp 90° (0.1 mm); R_f: 0.33 (1/1 ether/Skelly Solve); [α]_D – 2.2° (c 3, chloroform); IR (neat): 3400, 3070, 3030, 1640, 1100, 740, 700 cm⁻¹; ¹H NMR (CDCl₃) δ : 7.33 (s, 5H), 5.90–5.75 (m, 1H), 5.1 (M, 2H), 4.55 (s, 2H), 3.90 (m, 1H), 3.6–3.4 (m, 2H), 2.41 (d, 1H, J = 3.3 Hz), 2.26 (t, 2H, J = 6.9 Hz); mass spectrum, m/e 192 (M^+ ,1), 92 (25), 91 (100); m/z calculated for C₁₂H₁₆O₂: 192.1150. Found: 192.1161.

4.1.1.30. 3-Vinylcyclopentanone (Conjugate Addition of Dilithium Divinylcyanocuprate to an α , β -Unsaturated Ketone) (499)

Cuprous cyanide (89 mg, 1 mmol) was placed in a dry two-necked flask containing a serum cap and a T-joint with access to argon and a vacuum. It was evacuated and flushed with argon 4–5 times and left under a static argon pressure. Dry tetrahydrofuran (2 mL) was introduced and the slurry cooled to -78° , to which was added vinyllithium (0.96 mL, 2.0 mmol) and the mixture warmed to 0°. It was recooled to -78° and cyclopentenone (75 µL, 0.9 mmol) was added. After 45 minutes at -78° , the reaction was quenched with 10% ammonium hydroxide in saturated aqueous ammonium chloride solution,

stirred at room temperature for 30 minutes, and extracted with ether. Analysis by VPC indicated formation of the product in 93% yield against 3-methylcyclopentanone as internal standard; IR (neat): 1740, 990, 910 cm⁻¹; ¹H NMR (CDCl₃) δ : 1.5–3.0 (m, 7H), 5.1 (m, 2H), 5.8 (m, 1H); high resolution mass spectrum, m/z calculated for C₇H₁₀O: 110.0732. Found: 110.0733.

4.1.1.31. 3-Butyl-3,5,5-trimethylcyclohexanone [Conjugate Addition of Dilithium n-Butyl(methylsulfoxymethyl)cyanocuprate to an α , β -Unsaturated Ketone] (273)

The lithic anion of dimethyl sulfoxide was generated as a 0.2 M solution in tetrahydrofuran by treatment of dimethyl sulfoxide with n-butyllithium (1 equivalent) at 0° for 15 minutes. This was then transferred to a slurry of cuprous cyanide (1 equivalent) in tetrahydrofuran at -78° via cannula. The mixture was warmed to 0°, resulting in a light green slurry which was recooled to -78° , and *n*-butyllithium (1 equivalent) was added and allowed to warm to 0° to ensure cuprate formation. It was then cooled to -78° and a solution of 3,5,5-trimethylcyclohexen-1-one (0.45 equivalent) in tetrahydrofuran was added via syringe. After 3 hours at -78° and an additional 1 hour at 0°, the reaction was quenched with a saturated ammonium chloride solution containing 10% ammonium hydroxide. After stirring for 15 minutes, it was suction filtered through Celite; the filter cake was washed with ether and the aqueous phase extracted with more ether. Analysis of the combined organic phases by VPC showed the product had formed in 95% yield; ¹H NMR (CDCl₃) δ : 2.19–2.08 (m, 4H), 1.59 (t, 2H, J = 15 Hz), 1.49 (d, 2H, J = 14 Hz), 1.26–1.21 (m, 4H), 1.03 (s, 3H), 1.02 (s, 3H), 0.98 (s, 3H), 0.88 (t, 3H, J = 7 Hz).

5. Tabular Survey

Tables I–XI are organized in the sequence used in the Scope and Limitations section. Literature coverage from 1976 through 1987 is as exhaustive as possible, using both computer scanning services and hand searches. Many 1988 references are also included, although coverage for that year is not complete. In addition, some selected references for the period 1989–1991 were inserted during the proof stage. Citations for which critical data such as conditions and yields are missing are not included. Unspecified conditions are indicated by—, and unspecified yields are indicated by (—).

Tables I–X are ordered by increasing carbon number of the basic structural unit of the educt, omitting the carbon count of, for example, protecting groups or the alcohol portion of a carboxylic ester. Table XI provides examples of the use of copper reagents in the synthesis of a target structure (or analog) of a natural product. Entries in each subtable of Table XI are arranged by target molecule in alphabetical order, with the following exception. When essentially identical chemistry was used for two or more different target molecules, only one set of structures is given, and the other target molecules (not in alphabetical order) are listed with the pertinent references, but without conditions or structures.

Abbreviations used in all tables are as follows:

Ac	acetyl
acac	acetylacetonate
Bn	benzyl
BT	benzothiazol-2-yl
COD	1,5-cyclooctadienyl
Ср	cyclopentadienyl
diglyme	diethylene glycol dimethyl ether
DMA	N,N-dimethylacetamide
DMAP	<i>p-N,N</i> -dimethylaminopyridine
DME	1,2-dimethoxyethane
DMPU	N,N¢-dimethylpropyleneurea
DMS	dimethyl sulfide
ether or Et ₂ O	diethyl ether
EE	ethoxyethyl, C ₂ H ₅ OCH(CH ₃) $-$
HMPA	hexamethylphosphoric triamide
HMPT	hexamethylphosphorous triamide

LDA	lithium diisopropylamide
MOM	methoxymethyl
MPTP	$C_6H_5N(CH_3)P^+(C_6H_5)_3I^-$
Ms	methanesulfonyl
NBS	<i>N</i> -bromosuccinimide
NCS	N-chlorosuccinimide
PPTS	pyridinium <i>p</i> -toluenesulfonate
Ру	pyridine
TBDMS	tert-butyldimethylsilyl
Tf	trifluoromethylsulfonyl
THF	tetrahydrofuran
THP	tetrahydropyranyl
TMEDA	N,N,N',N'-tetramethylethylenediamine
TMS	trimethylsilyl
Ts	<i>p</i> -toluenesulfonyl
XS	excess

Copper reagents used with the Grignard reagent in Tables I–III are as follows:

A Li_2CuCl_4 B CuCl C CuBr D Cul E CuBr·(CH₃)₂S F CuCl₂·P(C₆H₅)₃ G CuCN H Cu(acac)₂ I CuBr·LiBr

Table I. Copper-Catalyzed Reactions of Grignard Reagents

View PDF

Table II. Substitution and Conjugate Addition Reactions of Stoichiometric Cu(I)-RMgX Reagents

View PDF

Table III. Carbocupration Reactions of Stoichiometric Cu(I)-RMgX Reagents

View PDF

Table IV. Substitution Reactions of Lower-Order Lithioorganocuprates

View PDF

Table V. Carbocupration Reactions of Lower-Order Lithioorganocuprates

View PDF

Table VI. Conjugate Addition Reactions of Lower-OrderLithioorganocuprates

View PDF

Table VII. Substitution Reactions of Organocopper Reagents, RCu

View PDF

Table VIII. Reactions of RCu in the Presence of Additives

View PDF

Table IX. Reactions of Higher-Order Cuprates

View PDF

 Table X. Reactions of Other Organocopper Species

View PDF

Table XI. Organocopper Compounds in Synthesis of Natural Products

View PDF

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)		Ref	
	A. Reaction	s of Alkyl/Alkenyl Halides and Sulfonate	es			
C,	22.2					
CD ₃ I	C ₆ H ₅ S MgBr	THF, 20°, 30 min	C6H2S CD3	(57)	5	
	(0.01% A) CH-MeCl		(CH_2) -Sn $(C_4H_0-n)_2$			
(n-C4H9)3SnCH2I		THF, 0°, 5 min		(95)		
	(0.4% A)		0			
2	(0.470 M)					
CIMgO ₂ CCH ₂ Br	n-C ₅ H ₁₁ MgBr	THF, -20°	$n-C_6H_{13}CO_2H +$	(26)	1	
	(4% A)		$HO_2C(CH_2)_2CO_2H$	(40)		
Br(CH ₂) ₂ O ₂ CCH ₃	n-C ₇ H ₁₅ MgCl	THF, $(C_2H_5O)_3P$, -25°	$n-C_9H_{19}O_2CCH_3$	(75)	1	
	i-C ₃ H ₇ MgCl	THF, (C ₂ H ₅ O) ₃ P, -25°	i-C ₃ H ₇ CH ₂ CH ₂ O ₂ CCH ₃	(53)	1	
Br(CH ₂) ₂ OC ₂ H ₅	(5% C) n-C.H.MgCl	THF 10°. 4 h	n-C.H.,OC.H.	(76)	1	
BI(CH2)2002115	(5% D)			(10)		
	(5% D)	1HF, -25°, 12 h	$C_{6}H_{11}(CH_{2})_{2}OC_{2}H_{5}$	(48)	1	
B-(CH) OC H	~	TUE 459 2 b	~	(70)	1	
BI(CH2)20C6H5	MgCl (3% A)	IHF, 05 , 5 ll	(CH ₂) ₂ OC ₆ H ₅	(78)		
Br(CH ₂) ₂ OH	C ₆ H ₁₁ MgCl (3 eq) (5% C)	THF, (C ₂ H ₅ O) ₃ P, 15°, 1 h	C ₆ H ₁₁ (CH ₂) ₂ OH	(78)	1	
	r-C₄H₂MgCl (3 eq) (5% C)	THF, (C ₂ H ₅ O) ₃ P, -15°, 0.5 h	ℓ-C₄H₀(CH₂)₂OH	(56)	1	
ICH) OH	1 (200)	TUE 65º 2 h	14	(75)		
1(CH2)2011	MgCl (2 eq)	1111, 05, 21	(CH ₂) ₂ OH	(15)		
	(3% A)					
CIMeO.C(CH.).Br	C.H.(CH.).MaBr	THE - 20°	CH(CH)COH	(77)	1	
ChvigO20(C112)2D1	(4% A)	1111, 20	0,113(0112)400211	(11)		
- 0111	H	TTTT 00 1 5 1	H	(07)		
<i>n</i> -C ₃ H ₇ I	/~_MgBr	IHF, U, 1.5 h	/~C3H7-n	(97)	5	
	10:90 E:Z		12:88 E:Z			
Br(CH ₂) ₃ Br	(10% D) C ₆ H ₃ MgBr (1 eq) (5% C)	THF:HMPA (12:1), reflux, 4 h	$C_6H_5(CH_2)_3Br + C_6H_5(CH_2)_3C_6H_5 + C_6H_5C_6H_5$	(—)	5	
	p-CH ₃ OC ₆ H ₄ MgBr (3.5 eq)	THF, 20°, 24 h	p-CH ₃ OC ₆ H ₄ (CH ₂) ₃ C ₆ H ₄ OCH ₃ -p	(—)	5	
~~~			1 0	(50)		
I	MgBr	1HF, 0 ⁻ , 2 h		(59)	2	
	(5% D)		<b>N</b>			
	0,0		(CH ₂ ) ₃ +			
	(2 eq)	THF: HMPA (12:1), reflux,	60.5:34	()	5	
	Y	4 h	24			
	MgBr (5% C)		(CH ₂ ) ₃ Br			
	(570 C)		$\bigvee$			
			2-			
			<b>So</b>			
5	Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
----	--------------------------------------------------------------------------------------	------------------------------------------------------	------------------------------------	---------------------------------------------------------------------------------------------------	------	-------
C.						
	Br(CH ₂ ) ₄ Br	(1 eq) MgCl (5% A)	THF, 20°, 16 h	(CH ₂ ) ₄ Br	(40)	98
		MgBr (5% C)	THF:HMPA (12:1), reflux, 4 h	$ \begin{array}{c}                                     $	()	578
	Д°	CIMgO(CH ₂ ) ₁₀ MgCl (5% A)	THF, -10°, 1 h	79:21 HO(CH ₂ ) ₁₀ CH(CH ₃ )CH ₂ CO ₂ H	(73)	581
		MgBr (Cat. A)	Ether	X	()	582
	I(CH ₂ ) ₄ O ₂ CCH ₃	(5% D)	THF, -80° to reflux, 8 h	COL (CH ₂ ) ₆ O ₂ CCH ₃	(77)	583
C,		OCH.		OCH.		
	n-C ₅ H ₁₁ I	CH30 MgCl	THF, 20°, 16 h	CH30 C5H11-n	(66)	567
	C ₂ H ₅ (CH ₃ )C-	(2% A) n-C₄H₀MgCl (5% C)	Ether, 10°, 2h	C ₂ H ₅ (CH ₃ )C(OH)C ₅ H ₁₁ -n	(68)	584
	(OMgCl) CH ₂ Br ClMgO ₂ C(CH ₂ ) ₄ Br	s-CaHaMgBr	THF, -20°	s-C4H9(CH2)4CO2H	(88)	103
	CH3O2C(CH2)4I	(4% A) MgCl (3% A)	THF, 0–20°, 16 h	(CH ₂ ) ₄ CO ₂ CH ₃	(80)	98
	Br(CH ₂ ) ₅ Br	MgBr (5% C)	q) THF:HMPA (12:1), reflux, 4 b	CH ₂ ) ₅ Br + (CH ₂ ) ₅ Br 76:18	()	579
	C2H5O2C(CH2)4Br	(378 C)	THF, -10°, 1.5 h	° √ (CH ₂ ) ₄ CO ₂ C ₂ H ₅	(77)	585
C,	CH3O2C(CH2)3I	MgCl	THF, -30 to 0°, 2 h	(CH ₃ ) ₅ CO ₂ CH ₃	(68)	98

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)		Refs
Br(CH ₂ ) ₆ Br	<i>i</i> -C ₃ H ₇ MgBr (1 eq) (5% C)	THF:HMPA (12:1), 25°, 4 h	i-C ₃ H ₇ (CH ₂ ) ₆ Br + i-C ₃ H ₇ (CH ₂ ) ₆ C ₃ H ₇ -i	(44) (16)	579
n-C ₆ H ₁₃ I	(CH ₃ ) ₃ Si CH ₂ MgCl (10% D)	THF	(CH ₃ ) ₃ Si C ₇ H ₁₅ -n	(70)	586
C,					
C ₆ H ₅ CH ₂ Cl	t-C₄H₄MgCl (0.25% A)	THF, 30°, 2 h	C ₆ H ₃ CH ₂ C ₄ H ₆ -t	(84)	587
$\bigcirc$	$ \begin{array}{c} & & \\ & & \\ & & \\ & (-\% \text{ A}) \end{array} $	THF, 0°, 8 h		(60)	588
	(CH ₃ O) ₂ CH(CH ₂ ) ₂ MgBr (1.4 eq) (2% A)	Ether, THF, -20°, 1 h		(60)	589
$n-C_7H_{15}X$ $(X = I,$ Br, OTs)	MgCl (10% D)	THF, 0°, 2 h	C7H15-11	(80–90)	106
C	(				
1-Iodooctane	CH ₂ MgCl (0.4% A)	THF, 0°, 5 min	(CH ₂ ) ₈ CH ₃	(92)	99
	MgBr	Ether, 0°, 1.5 h	1-Undecene	(80)	106
	(10% D)	THF, 0°, 1.5 h	1-Decene	(82)	577
	(10% D) H				
	MgBr 10:90 E:Z (10% D)	THF, 0°, 1.5 h	12:88 E:Z	(96)	577
	(CH ₃ ) ₃ Si (10% D)	THF, 0°, 1 h	(CH ₃ ) ₃ Si 95:5 E:Z +	(77)	577
			(CH3)3Si	1) (12)	
	Si(CH ₃ ) ₃	THF, 0°, 1 h	Si(CH ₃ ) ₃	(97)	577
	MgBr (10% D)		✓ C ₈ H ₁₇ -n		
	i-C ₃ H ₇ MgBr (3% A)	THF, 65°, 2 h	2-Methyldecane	(78)	98
	(3% A)	THF, 20°, 16 h	1-Decene	(36)	98
	MgCl (20% D)	THF, 0°, 2 h	C ₈ H ₁₇ -n	(60)	98
	MgCl (2% A)	THF, 20°, 16 h	C ₈ H ₁₇ -n	(95)	98
n-C _a H ₁₇ OTs	→ MgBr (10% D)	THF, 0°, 3 h	<i> </i>	(80)	577

TABLE I. COPPER-CATALYZED REACTIONS OF GRIGNARD REAGENTS (Continued)

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
2-Iodooctane	CH ₂ MgCl	THF, 0°, 5 min		(89)	99
	(0.4% A) MgCl (5% A)	THF, 20°, 16 h	C ₈ H ₁₇ -s	(45)	98
p-BrC ₆ H ₄ CH ₂ CH ₂ I	MgCl	THF, 20°, 16 h	CH2CH2C6H4Br-p	(87)	98
$\sim C_2H_5$	(3% A) n-C ₄ H ₃ MgBr (3% A)	THF, -20°	$ \begin{array}{c} \begin{array}{c} n - C_4 H_9 \\ \hline \\ C_2 H_5 \end{array} \end{array} \xrightarrow{H} \\ C_4 H_9 - n \end{array} $	(70)	107
	<i>t</i> -C₄H₂MgBr (3% A)	THF, -20°	^{<i>n</i>-C₄H₉ H C₂H₅ C₄H₉-<i>t</i>}	(70)	107
	(3% A)	THF, -20°	n-C ₄ H ₉ C ₊ H	(70)	107
	MgBr (3% A)	THF, -20°	$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$	(50)	107
	i-C ₃ H ₇ MgCl (5% A)	THF, -20°, 0.5 h, then CO ₂ , H ⁺	$ \begin{array}{ccc}  & n-C_4H_9 & H \\  & C_2H_5 & CO_2H \\  & n-C_4H_9 & H \\  & C_2H_5 & C_3H_7-i \\  & 38:62 \\ \end{array} $	(—)	107
C, $\int_{(CH_2)_3Br}^{O}$	MgBr (2 eq) (0.6% A)	THF, 0°, 3 h	$\begin{pmatrix} 0\\ 0\\ 0\\ (CH_2)_4CH=CH_2 \end{pmatrix}$	()	100
Cio OTs OCH	² C ₆ H ₅ (3% A) MgBr	Ether, THF, 20°, 6 h	CH2C6H5	(85)	590
C ₁₁ <i>n</i> -C ₁₀ H ₂₁ CD ₂ OTs	C ₂ H ₃ MgBr	THF, 25°, 16 h	$n-C_{10}H_{21}CD_2C_2H_5$	(67)	104
	(1% A) n-C ₁₀ H ₂₁ MgBr	THF, 25°, 16 h	$(n-C_{10}H_{21})_2CD_2$	(83)	104
CIMgO ₂ C(CH ₂ ) ₁₀ Br	(1% A) <i>n</i> -C₅H ₁₁ MgBr	THF, -20°	<i>n</i> -C ₁₅ H ₃₁ CO ₂ H	(94)	103
Br(CH ₂ ) ₁₀ CO ₂ Na	(2% A) (CH₃)₃SiO(CH₂)₄MgBr (—% A)	THF, -20°, 2 h	HO(CH ₂ ) ₁₄ CO ₂ H	(87)	591
CH ₂ Cl	<i>t</i> -C ₄ H ₉ MgCl (0.25% A)	THF, 30°, 2 h	CH ₂ C ₄ H ₉ - <i>t</i>	(86)	587
C ₁₂ Br(CH ₂ ) ₁₂ Br	THPO(CH ₂ )11MgBr (2% A)	THF, 20°, 12 h	THPO(CH ₂ ) ₂₃ Br	(51)	592
CH ₂ E	^{3r} <i>t</i> -C₄H ₉ MgCl (0.25% A)	THF, 30°, 2 h	CH ₂ C ₄ H ₉ -t	(91)	587

TABLE I. COPPER-CATALYZED REACTIONS OF GRIGNARD REAGENTS (Continued)

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)		Refs
		B. Reactions of Allylic Substrates			
C3					
CI Si(CH ₃ ) ₃	n-C₄H₀MgBr (10% D)	THF, 0°, 30 min	n-C ₄ H ₉ CH ₂ CH=CHSi(CH ₃ ) ₃	(83)	595
OP(0)(0C2H5)2	C ₆ H ₅ CH ₂ MgBr (5% C)	Ether, 0°, 12 h	4-Phenyl-1-butene	(88)	120
	n-C ₇ H ₁₅ MgCl (5% C)	Ether, 0°, 12 h	1-Decene	(92)	120
	n-C₄H₄C≡CMgCl (5% C)	Ether, 0°, 12 h	n-C₄H₀C≡C−	(78)	120
SO2C6H5	C ₆ H ₅ MgBr	THF, 60°, 4 h	Allylbenzene	(94–96)	119
	(5% H of F of A) n-C₄H₀MgBr (5% F)	THF, 60°, 4 h	1-Heptene	(96)	119
	t-C₄H₄MgBr (5% F)	THF, 60°, 4 h	1-C4H9	(52)	119
	(5% F)	THF, 60°, 4 h	1,5-Hexadiene	(87)	119
OC ₂ H ₅	- CHMeP-	TUE _ 5º 2 b	n-C4H9OC2H5	(76)	122
OC ₂ H ₅	(5% C)	IHF, -5,2 h	35:65 E:Z	(70)	122
	MgBr	THF, -5°, 2 h	4	₂ H ₅ (91)	122
<i>■</i> Br	$BrMg = C_{5}H_{11}-n$ $BrMg = SiCH_{3}(R)_{2}$ $R = CH_{3} - C_{6}H_{5}$	1. THF, 0° 2. 6 N HCl, 20°, 6 h 3. 90% H ₂ O ₂ , KHF ₂ , DMF	0H n-C ₅ H ₁₁ 60% ee	(51)	594
2	(10% C)		.сн, ОС ₂ Н,		
	(5% C)	1HF, -15°, 12 h	24:76 E:Z	(83)	122
~~a ₽	CECMgBr (5% C)	THF, 60°, 1 h, 25°, 36 h	CEC(CH ₂ )30THP	(67)	595
MOH + M	C ₆ H ₅ MgBr (10% D)	THF, HMPA, -30°, 30 min	60:40 E:Z	(78)	596
P-CH3C6H6S	n-C ₆ H ₁₃ MgBr (1% H)	THF, 20°, 20 h	n-C ₆ H ₁₃	(69)	18
			n-C6H13	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	n-C ₆ H ₁₃ MgBr	THF, 20°, 20	$+ n - C_6 H_{13}$	(40)	118
OP(0)(OC ₂ H ₅ ) ₂	(1% H) C ₆ H ₅ MgBr	Ether, 25°, 12 h	$26:74  11:89 \ E:Z$	(96)	121
	(10% D)		10:90 68:32 E:Z		

TABLE I. COPPER-CATALYZED REACTIONS OF GRIGNARD REAGENTS (Continued)

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)	Refs
	CH2=C=CHCH2OP(O)(OC2H3)	- 100 and 100		
	n-C ₆ H ₁₃ MgBr (10% D)	Ether, 25°, 12 h	$C_6H_{13}-n$ $n-C_6H_{13}$ (91) 6:94 48:52 E:Z	121
	CH ₇ —C—CHMgBr (—% D)	Ether, $-10^{\circ}$	CH2=C=CH ()	597
0	$\sum $		$\sim$	
$\sim$	MgBr	THF, -25°, 1 h	СН2ОН (92)	127
	(5% C)		94:6 E:Z	
	Migbi	Ether, -78°	HO $+$ $(-)$	598
	(-%D)		HO	
0 1			18:82	
p-CH3C6H4S	n-C ₆ H ₁₃ MgBr	THF, 20°, 20 h	n-C ₆ H ₁₃ + n-C ₆ H ₁₃ (65)	118
Ö	(1% H)		16:84 40:60 E:Z	
2	n-C ₂ H ₁₃ MgCl	THF, 20°, 5 h	کے (85)	123
-OC ₂ H ₅	(5% C)		-C ₇ H ₁₅ -n	
87:13 E:Z	OT MO	77175 00% C L	93:7 $E:Z$	100
=	n-C₁H₁5MgCl (5% C)	1HF, 20 ⁻ , 5 h	9:01 + (90)	125
ÇO ₂ C ₂ H ₅	- CHM-CI	TUE other 909	CO ₂ C ₂ H ₅ (22)	500
-O2CCH3	(2.5% D)	THF, etter, -80	n-C_4H_ (02)	399
			CO ₂ C ₂ H ₅	
	C ₆ H ₁₁ MgCl (2.5% D)	THF, ether, $-80^{\circ}$	C ₆ H ₁₁ (76)	599
	t-C4H9MgCl	THF, ether, $-80^{\circ}$	CO ₂ C ₂ H ₅ (85)	599
	(2.5% D)		1-C4H5	
OC ₂ H ₅	n-C₄H₄MgCl	THF, -15°, 12 h	<i>п-С₄Н9</i> (75)	122
OC ₂ H ₅	(5% C)		33:66 E:Z	
VOC2H5	P-C H McCl	THE -15 to 10° 15 h	$n-C_4H_9$ $rOC_2H_5$ (66)	122
OC ₂ H ₅	[5% C, 2P(OC ₂ H ₅ ) ₃ ]	111, -15 6 10, 15 1	45:55 E:Z	122
C4, C5			R	
R'R"C=C=C=CHOCH ₃	RMgX (10% C)	THF or ether, 35°, 1 h	R'R"C= (80–90) C≡CH	179
R', R'' = H,	$\mathbf{R} = n \cdot \mathbf{C}_4 \mathbf{H}_9, \mathbf{C}_2 \mathbf{H}_5,$			
C,	· · · · · · · · · · · · · · · · · · ·			
			CH2C6H3	
	→MgCl	Ether, 25°, 12 h	78:22 E:Z (88)	121
	(10% D)		+	
	4	Ether, 25°, 12 h	+ (91)	12
	// MgBr (10% D)		OCH ₂ C ₆ H ₅	
	(1070 D)		OCH ₂ C ₆ H ₅	
			95:5	

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)		Ref
но	$-CI \qquad MgCI (2 eq) (10% D)$	THF, -50 to 25° 4 h	→ OH	(60)	100
and a	(10% D) MgBr (5% D)	THF, -15°, 1.5 h	96:4 E:Z OH +	(79)	12
				(19)	
	MgBr	THF, −25°, 1 h	92-8 F-Z	(90)	12
» L°	CH ₃ MgBr (2% D)	THF, DMS (20:1), -100°, 15 min	92:8 E:Z	(70)	11
~	n-C ₄ H ₉ MgBr (2% D)	THF, DMS (20:1), -100°, 15 min	n-C4H9 CO2H	(94)	11
	s-C₄H₂MgBr (2% D)	THF, DMS (20:1), -100°, 15 min	s-C ₄ H ₉ CO ₂ H 88:12 E:Z	(96)	110
	MgBr (2% D)	THF, DMS (20:1), -78°, 15 min	78:22 E:Z	(56)	110
			CO ² H	(5)	
C ₆ H ₅ S	n-CcH13MgCl (1% H)	THF, 20°, 20 h	n-C6H13	(2)	118
	n-C ₆ H ₁₃ MgCl (10% H)	THF, 20°, 20 h	n-C6H13	(65)	118
	H ₅ n-C ₇ H ₁₅ MgCl (5% C)	THF, 20°, 5 h	$\sum_{0.5} C_{7}H_{15}n + \sum_{0.5} C_{7}H_{15}n$	· ⁿ (83)	12
· · · · · · · · · · · · · ·	3Cl ⁻ THPO(CH ₂ ) ₆ MgCl (5% A)	THF, $-70^{\circ}$ , then (CH ₃ CO) ₂ O, C ₃ H ₅ N	(CH ₂ ) ₅ O ₂ CCH ₃	(82)	600
HC≡C ,0,0	C₅H₃MgBr (4% A) CH₃	THF, 0°, 1 h	HC≡C C6H3	(70)	601
	<i>n</i> -C₄H₂MgBr (2% D)	THF, DMS (10:1), -78°, 1 h	n-C4H9 CO2H	(92)	115
	t-C,H₂MgBr (2% D)	THF, DMS (10:1), -78°, 1 h	r-C4H9 72:28 E:Z	(88)	115
	MgBr (2% D)	THF, DMS (10:1), -30 to 0°, 3 h	CO2H	(48)	11:
			14:20 E:2		

TABLE I. COPPER-CATALYZED REACTIONS OF GRIGNARD REAGENTS (C
-------------------------------------------------------------

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)	Refs
	C₅H₃MgBr (2% D)	THF, DMS (10:1), -78°, 1 h	C ₆ H ₅ 72:28 E:Z (84)	115
$\sim$	<i>n</i> -C₄H₄MgBr (2% D)	THF, DMS (20:1), -30°, 1 h	$n-C_4H_9$ $CO_2H$ (93) 86:14 E:Z	117
	s-C4H3MgCl (2% D)	THF, DMS (20:1), -30°, 1 h	$5-C_4H_9$ $CO_2H$ (90) 83:17 E:Z	117
	MgBr (2% D)	THF, DMS (20:1), -30°, 1 h	67:43 E:Z  (59)	117
Cl ₃ SiO SC ₆ H ₅	n-C _s H ₁₇ MgBr (—% D)	THF, 20°, 40 min	$ \begin{array}{c}     n - C_8 H_{17} \\                                    $	602
(CH ₃ ) ₃ Si C ₆ H ₅ CH ₂ (CH ₃ ) ₂ N ⁺	CI- (CH ₃ ) ₃ SiCH ₂ MgCl (3.5 eq) (5% A)	THF, $-40$ to $-20^{\circ}$ , 6.5 h	(CH ₃ ) ₃ Si (CH ₃ ) ₃ SiCH ₂ (89)	603
	→ C ₂ H ₃ MgBr (3% G)	Ether, 0°, 5 h	$C_2H_5$ (68)	62a
	C ₆ H ₁₁ MgBr (3% G)	Ether, 0°, 5 h	(75-87)	62a
	MgBr (3% G)	Ether, $-60$ to $0^{\circ}$ 5 h	(66)	62a
	MgBr (6% G)	Ether, THF (1:1), 0°, 5 h	(56)	62a
5	C ₆ H ₅ MgBr (3% G)	Ether, 0°, 5 h	C ₆ H ₅ (92)	62a
c,	s-C₄H₂MgCl (3% D)	THF, DMS (20:1), -45°, 1 h	s-C4H9 83:17 E:Z CO2H (94)	117
	C₅H₃MgBr (3% D)	THF, DMS (20:1), -45°, 1 h	C ₆ H ₅ 67:33 E:Z CO ₂ H (56)	117
O ₂ CCH ₃	₂ CH ₃ <i>n</i> -C ₄ H ₂ MgBr (3% D)	THF, DMS (20:1), -45°, 1 h	n-C ₄ H ₉ CO ₂ CH ₃ + (51)	117
			$n-C_4H_9$ $CO_2CH_3 + (39)$	
			CO ₂ CH ₃ (8)	
CH3O OCH3	СН ₃ MgBr (20% D)	Ether	(94)	604
C2H5	02CCH3 THPO(CH2)5MgCl (4% A)	<ol> <li>THF, -10 to 0°, 1h</li> <li>TsOH, CH₃OH</li> <li>(CH₃CO)₂O, C₅H₃N</li> </ol>	C ₂ H ₅ (CH ₂ ) ₆ O ₂ CCH ₃ (65)	605

TABLE I. COPPER-CATALYZED REACTIONS OF GRIGNARD REAGENTS (Continued)



Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)	Refs
	C _e H ₅ MgBr (2 eq) (1% G)	Ether, 25°, 1 h	$C_6H_5$ + D $C_6H_5$ (80 D $C_6H_5$	)) 62
CH ₃ 0	n-C4H9MgCl [5% C, 3P(OC2H3)3]	THF, 25°, 15 h	$47:53$ $n-C_4H_9$ $+$ $(7)$ $n-C_4H_9$	7) 12
CH30	n-C4H3MgCl [5% C, 3P(OC2H3)3]	THF, 25°, 3 h	$40:60$ $n-C_4H_9$ $+$ $(64)$ $n-C_4H_9$	0) 12
CH ₃ 0	n-C4H9MgCl [5% C, 3P(OC2H3)3]	THF, 25°, 3 h	40:60	0) 12
сн30	n-C ₄ H ₉ MgCl [5% C, 3P(OC ₂ H ₃ ) ₃ ]	THF, 25°, 1 h	n-C ₄ H ₅ (8	3) 12
OCH3	CH3MgBr (15% D)	THF, reflux	OCH ₃ (8	32) 6
	n-C₄H₂MgCl (5% C)	THF, 20°, 5 h		72) 1
C ₆ H ₅ CH=CHCH ₂	OCH ₃ C ₂ H ₅ MgBr (excess) (10% C)	THF, -25°	$C_{6}H_{5}CH=CHCH_{3} + (-C_{6}H_{5}CH_{2}CH=CH_{2} + C_{6}H_{5}CH_{2}CH=CH_{2}H_{7}-n$	-) 1
	CI CH ₂ MgCl	THF, 0°, 5 min		79)
$>\sim$	$C_6H_5CH_2O$ MgBr CCH ₃ (4% A) (2 eq)	THF, 0°, 1 h	C ₆ H ₅ 0 (7	79) 6
>	OH C₂H₃MgBr (10% D)	THF, HMPA, -30°, 30 min		85) 5
	// TMSC=CMgBr (4% A)	THF, 22°, 3 h	n-C ₄ H ₉	87) 6

TABLE I. COPPER-CATALYZED REACTIONS OF GRIGNARD REAGENTS (Continued)

	Refs.
(80)	611
(98)	62a
ີ (96) -n	62a
ی (91) ر	62a
(76)	62a
(80)	118
(83)	124
1 ₂ (96)	612
H ₅ (54)	119
I ₉ -n (92)	120
(~100)	613
₄H9,	
	² (96) ¹ ₂ (54) ¹ ₃ -n (92) (~100) ² ₄ H ₉ ,

TABLE I.	COPPER-CATALYZED	REACTIONS OF	GRIGNARD	<b>REAGENTS</b>	(Continued)
INDEL I.	COTTER-CATALIZED	ILLACTIONS OF	ORIONARD	ILLAOLINIS	commune)

2				
Å	n-C.H.MgCl (10% C)	THF, 0°, 2 h	<i>n</i> -C ₆ H ₁₃ OH	(88)

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
C3					
	CH ₂ MgBr	THF, -30°, 1.5 h	(CH ₂ ) ₃ OH	(81)	111
	n-CtHyMgCl	Ether, 20°, 20 h	<i>n</i> -C ₂ H ₁₅ OH	(75)	110
	(10% D) C _s H _s MgBr (10% D)	THF, 20°, 20 h	C₄H₄(CH₂)₃OH	(52)	110
	MgBr (10% D)	Ether, 20°, 20 h	(CH ₂ ) ₄ OH	(50)	110
$\langle$	n-CtHyMgCl	THF, 0°, 2 h	n-C ₅ H ₁₁ CH(CH ₃ )OH	(93)	110
0	(10% C) C _s H _s CH₂MgCl (10% C)	THF, 0°, 2 h	C ₆ H ₅ (CH ₂ ) ₂ CH(CH ₃ )OH	(91)	110
		THF, −30°, 1.5 h	>он	(68)	110
	(25% E)	THF, -30°, 17 h	6 OH	(54)	143
	C ₆ H ₅ (CH ₂ ) ₂ MgBr C ₆ H ₅ (20% D)	THF, DMS (20:1), -30°	C ₆ H ₅ (CH ₂ ) ₃ C ₆ H ₅ H OH	(90)	614
SC6H	s MgBr (20% D)	THF, -30°, 2 h	OH SC6H2	(80)	615
C ₆ H ₅ SO ₂		THF, ether	OH C ₆ H ₃ SO ₂ C ₀ H ₁₉ - <i>n</i>	(83)	616
A_Br	MgBr (10% C)	Ether, THF, $-73$ to $-30^{\circ}$ , 5 h	OH Br	(81)	617
Сно	C ₂ H ₅ ) ₂ THPO(CH ₂ ) ₆ MgCl (3% C)	THF, -50°, 15 h	OH THPO(CH ₂ ) ₇ CH(OC ₂ H ₅ ) ₂	(81)	618
C&HsQ	-OH MgBr (10% D)	THF, ether, $-25^{\circ}$	C ₆ H ₅ O-OH	(72)	619
C2H5	BrMg Si(CH ₃ ) ₃	THF, -30 to 0°, 17 h	C ₂ H ₅ CHOHCH ₂	(83)	620
A OCIC	Si(CH ₃ ) ₃ H ₅ ) ₃ (10% D)	1. THF, DMS, 0°, 12 h 2. H⁺, H₂O	(CH ₃ ) ₃ Si OH OH	(84)	621
Å .	MgBr	-	OH P(0)(C ₆ H ₅ ) ₂	(90)	622
r(0)(C6	(10% D)		$\bigcirc$		



TABLE I. COPPER-CATALYZED REACTIONS OF GRIGNARD REAGENTS (Continued)

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
	MgBr	THF, TMSCI, 0°, 2 h	TMS OTMS (54)	624
	CH ₃ MgCl (-% C)	—	OH OTs (74)	625
C ₅	BrMg Si(CH ₃ ) ₃ (10% D)	THF, -30 to 0°, 3 h	$ \begin{array}{c} \overset{n-C_4H_9}{\swarrow} & \overset{CH_2}{\swarrow} & \overset{Si(CH_3)_3}{\swarrow} \\ \overset{C_3H_5}{\longleftarrow} & OH \end{array} $	619
C ₆ H ₅	BrMg Si(CH ₃ ) ₃ (10% D)	THF, -30 to 0°, 3 h	HO $C_6H_5$ (95) 70:30 $C_6H_5$ $C_6H_5$ $C_6H_5$	619
n-C ₆ H ₁₃ CH ₃ CH ₃	i-C₃H₁MgCl Hァ⁻i (10% G)	THF, -40 to -25°, 1.5 h	HO HO $n-C_6H_{13}$ $SiOC_3H_7-i$ $CH_3$ $SiOC_3H_7-i$ $CH_3$ $CH_3$ $SiOC_3H_7-i$ $CH_3$ $CH_3$ $CH_3$ $SiOC_3H_7-i$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ C	626
6-	C₂H₃MgBr (10% G)	<ol> <li>Ether, -50 to -20°, 4 h</li> <li>H₂O₂, KF, KHCO₃, THF, CH₃OH, 25°, 12 h</li> </ol>	$\begin{array}{c} \text{OH} \\ n\text{-}C_6H_{13} \\ \text{OH} \\ \end{array} (>45)$	62
C6H5	<u>0</u> <i>n</i> -C ₁₀ H ₂₁ MgBr, 1.7 eq (20% D)	THF, DMS (10:1), -20°	HO H $C_6H_5$ $C_{10}H_{21}-n$ (83)	613
	C ₂ H ₃ MgI (5% D)	THF, 0°, 4 h	ОН (53)	629
C ₁₁ PC4H9O2CNH C6H11	→MgCl →0 (-% D)	-	$C_{6}H_{11}$ OH C ₆ H ₁₁ (55)	628
	s MgCl (10% D)	THF, -30°	C ₆ H ₅ HO 	113

TABLE I. COPPER-CATALYZED REACTIONS OF GRIGNARD REAGENTS (Continued)

	RMgX	Reaction	Product(s)		
Substrate	(mole % CuX)	Conditions	and Yield(s) (%)		Refs.
			C ₆ H ₅		
	MgBr	and the	HOOO	(0.0)	
	(100% D)	THF, -30°		(90)	113
	(10% D)		Br		
			C ₆ H ₅		
	MgBr	THE - 30°	HO	(75)	113
	(10% D)		and a	()	
		a statutes for the same	1		
S. 19 -	D.	Reactions of Propargylic Substrates			
C ₃	OWNE	Exten (% 12 b		(68)	120
HC=COP(O)(OC ₂ H ₅ ) ₂	n-C ₇ H ₁₅ MgBr (5% C)	Ether, 0, 12 h		(00)	120
			C ₇ H ₁₅ -n	(15)	
HCEC-CH	n-C,H₀MgBr	Ether, $-15^{\circ}$ , 0.5 h	n-C4H9CH=C=CHOC2H5	(78)	136
002113	(2% C) t-C ₄ H ₉ MgBr (2% C)	Ether, 20°, 0.5 h	t-C4H9CH=C=CHOC2H5	(79)	136
	MgCl	Ether, 30°, 0.5 h	CH=C=CHOC ₂ H ₅	(80)	136
	(2% C)		7		
C,			H		
HC≡C - H	<i>n</i> -C ₆ H ₁₃ MgBr (2 eq) (10% C)	Ether, $-30^\circ$ , 12 min	$= c = c_{c_6H_{13}-n}$	(70)	128
CH3CEC OCH3	n-C ₇ H ₁₅ MgBr (10% C)	Ether, 25°, 2 h	^{<i>n</i>-C₇H₁₅ = C=CH₂}	(81)	133
	i-C,H ₁₁ MgBr	Ether, 25°, 2 h	<i>i</i> -C ₅ H ₁₁ =C=CH ₂	(85)	133
	(10% C)		DEC.H.		
CH3OCH2CECCH2N(TMS)	2 p-FCsH_MgBr (5% E)	1. Ether, -25 to 25°, 18 h 2. TsOH, C₂H₃OH	C=CH2	(86)	630
CH3OCH2CECCH2OCH3	C _s H _s MgBr (2 eq)	Ether, 0°		(66)	
	(10% C)		C₄H₄CH₂CH=→ C₄H₅	(19)	631
and a contract of the loss			CH ₂ OCH ₃		
(C2H5O)2P(O)CH2CECCH	C.H., MgBr (3 eq)	THE 0_20° 12 b		(00)	(22
.(0,002.13/2	(10% D)	1111, 0-20 , 12 1	// C6H11	(00)	032
BrCH ₂ C=CCH ₂ Br	THPOCH ₂ C≡CMgBr (2 eq)	1. THF, reflux, 16 h 2. DOWEX W50-X8,	HO(CH ₂ C≡C) ₃ CH ₂ OH	(43)	633
C,	(5% B)	СН3ОН			
NOTO COMON LA COM	- CH M-P		$\geq c \neq$		
HC=CCH(CH ₃ )OCH ₃	п-слн _{із} мдвг (10% С)	Ether, 25°, 2 h	n-C ₇ H ₁₅ H	(85)	133
нс≡с	MgBr (5% C)	Ether, $-20^\circ$ , 1 h	≫=c=́∠он	(80)	127

		and rield(s) (%)	Refs
CH3MgI (4 eq) (25% D)	Ether, -20°, 4 h		128
CH₃MgI (4 eq) (25% D)	Ether, -20°, 4 h		128
H(OCH ₃ )CH ₃			
CH ₃ MgI (10% D)	Ether, 25°, 12 h	$C_6H_5CH_2N(CH_3)CH_2$ (70) =C=CHCH ₃	130 138
		H-NCH-	
CH ₃ MgI (5 eq) (10% D)	Ether, 25°, 12 h		130 130
n-C ₄ H ₉ MgBr (2% D)	THF, DMS (20:1), -78°, 1 h	<i>n</i> -C ₄ H ₉ =C=CO ₂ H ⁽⁹⁷⁾	137
s-C4H9MgCl (2% D)	THF, DMS (20:1), -78°, 1 h	s-C4H9 =C = CO2H (90)	137
t-C4H9MgCl (2% D)	THF, DMS (20:1), -78°, 1 h	r-C4H9 = C = CO2H (85)	137
MgBr (2% D)	THF, DMS (20:1), -78°, 1 h	CO2H (72)	137
MgBr (2% D)	THF, DMS (20:1), -78°, 1 h	$\int_{\mathbb{R}} = C = \sum CO_2 H $ (11)	137
<i>п</i> -С _в Н ₁₇ MgBr (10% С)	Ether, 37°, 3 h	$C_2H_5 = C = $ (46)	133
C ₆ H ₅ MgBr (10% C)	Ether, 25°, 2 h	$\begin{array}{c} C_{2}H_{5} \\ C \end{array} = C = \begin{pmatrix} c_{3} \end{pmatrix} $	133
<i>n</i> -C₅H ₁₇ MgBr (10% C)	Ether, 25°, 2 h	$\begin{array}{c} C_{g115} \\ \end{array} \\ n - C_{g}H_{17} \end{array} = C = \left( \begin{array}{c} (52) \\ \end{array} \right)$	133
C ₆ H ₅ MgBr (10% C)	Ether, 25°, 2 h	C ₄ H ₅ =C=(94)	133
(CHa)-OCHa		CHa	
<i>n</i> -C ₄ H ₉ MgBr (20% D)	THF, 25°, 6 h	$C_{6}H_{5}CH_{2}NCH_{2} = C = (70)$	130 138
CH ₃ MgBr (5% C)	Ether, 0°	H = C = O (100)	135
CH ₃ MgBr [5% C, 3P(OC ₂ H ₅ ) ₃ ]	Ether, 0°	H = C = -0 $H = C = -0 $ $H = -0$	135
<i>ι-</i> С <b>,</b> Н,,МgBr (5% С)	Ether, 0°	$H = C = O \qquad (100)$	135
	CH ₃ MgI (4 eq) (25% D) CH ₃ MgI (4 eq) (25% D) H(OCH ₃ )CH ₃ CH ₃ MgI (10% D) ³ CH ₃ MgI (5 eq) (10% D) ⁿ -C ₄ H ₃ MgBr (2% D) ⁿ -C ₄ H ₃ MgCl (2% D) ⁿ -C ₄ H ₄ MgBr (2% D) ⁿ -C ₄ H ₄ MgBr (2% D) ⁿ -C ₄ H ₄ MgBr (10% C) C ₄ H ₃ MgBr (20% D) CH ₃ MgBr (20% D) CH ₃ MgBr (20% D) CH ₃ MgBr (20% D)	CH,MgI (4 eq) (25% D)       Ether, $-20^{\circ}$ , 4 h         CH,MgI (4 eq) (25% D)       Ether, $-20^{\circ}$ , 4 h         H(OCH ₃ )CH ₃ CH ₃ MgI (10% D)       Ether, $25^{\circ}$ , 12 h         CH,MgI (5 eq) (10% D)       Ether, $25^{\circ}$ , 12 h         a       CH,MgI (5 eq) (10% D)       Ether, $25^{\circ}$ , 12 h         a       CH,MgE T       THF, DMS (20:1), $-78^{\circ}$ , 1 h         s-C,H,MgCl (2% D)       THF, DMS (20:1), $-78^{\circ}$ , 1 h         a       MgBr (2% D)       THF, DMS (20:1), $-78^{\circ}$ , 1 h         MgBr (2% D)       THF, DMS (20:1), $-78^{\circ}$ , 1 h         m-C,H,MgBr (2% D)       Ether, $37^{\circ}$ , 3 h         CH,MgBr (10% C)       Ether, $25^{\circ}$ , 2 h         (10% C)       Ether, $25^{\circ}$ , 2 h         (CH,MgBr (10% C)       Ether, $25^{\circ}$ , 2 h         CH,MgBr (20% D)       THF, $25^{\circ}$ , 6 h         CH,MgBr (20% D)       Ether, 0 ^o CH,MgBr (20% D)       Ether, 0 ^o CH,MgBr (5% C)       Ether, 0 ^o	CH_Mg[ (4 eq) (25% D) CH_Mg[ (4 eq) (25% D) CH_Mg[ (4 eq) (25% D) Ether, -20°, 4 h HOCH ₂ = H (80) HOCH ₂ = H (90) HOCH ₂ = H (90) HOCH ₂ = H (90) HOCH ₂ = H (90) CH_Mg[ (10% D) Ether, 25°, 12 h C_{H_MGBH} (10% D) Ether, 25°, 12 h C_{H_MGBH} (10% D) Ether, 25°, 12 h C_{H_MGBH} (10% D) Ether, 25°, 12 h H_MCH ₃ = C = H (97) 1 h SCH _{MG} CI (10% D) 1 h SCH _{MG} CI (2% C) (2% C)

TABLE I. COPPER-CATALYZED REACTIONS OF GRIGNARD REAGENTS (Continued)

284

285

έ,

Substrate	(1	RMgX nole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
THPO(CH ₂ ) ₄ CE	ECCH2OCH3	CH₃MgBr (25% C)	1. Ether, reflux 2. $C_2H_5OH$ , H ⁺	$HO(CH_2)_4$ $C=CH_2$ (4)	3) 634
O₂CC CF3C≣C	CH ₃ C ₂ H ₃ MgBr (-% A)		-	$CF_{3} = C = (42)$	3) 635
(CH ₃ ) ₂ NCH ₂ C = CCH(	OCH ₃ )C ₃ H ₇ -n n-C ₄ H ₉ MgBr (20% D)		THF, 25°, 6 h	$(CH_3)_2NCH_2 \xrightarrow{H} C \xrightarrow{H} C_{3H_7-n} (63)$	b) 130, 138
C≡CCH ₂ OC OH	C ₂ H ₃ C ₂ H ₅ MgBr (5 (10% C)	eq)	Ether	$\begin{array}{c} & \begin{array}{c} & \\ & \\ & \\ & HO \end{array} \begin{array}{c} C_2H_5 \end{array} \begin{array}{c} (40) \end{array}$	) 134
	H ₃ C ₂ H ₃ MgBr (5 (10% C)	eq)	Ether	$ \begin{array}{c} & & \\ & & \\ HO & C_2H_5 & H \end{array} $ (45)	) 134
	C ₂ H ₃ MgBr (5 I ₃ (10% C)	eq)	Ether	$\underset{HO}{} \underset{C_2H_5}{} \overset{C}{} \overset{(33)}{}$	) 134
С ₁₁ л-С ₈ H ₁₇ CΞC ОСН ₃	CH₃MgBr (10% C)		Ether, 37°, 3 h	$\rightarrow C=CH_2 \qquad (44)$	) 133
	<i>≀-</i> С₊Н₅МgBr (10% D) ≡CH		Ether, 0-20°, 30 min		i) 636
			E. Miscellaneous Reactions		
C. TMSCI	(10% D)	D	Ether, -30°	TMS + TMS (9)	2) 637
C ₁ CS ₂	C ₆ H ₁₁ MgCl		1. THF, -30°, 0.5 h	$C_{6}H_{11}C(S)SCH_{3}$ (10)	0) 142
	(5-10% C)		2. CH ₃ 1, 25°	)	3) 142
(C ₂ H ₃ ) ₂ NCH ₂ - OC ₄ H ₉ -n	(5% D)	x	Ether, 0-20°, 15 h	$\mathbb{N}(C_2H_5)_2 \tag{60}$	)) 638
C ₂ ( <i>i</i> -C ₃ H ₇ O) ₂ - P(O)CHFCOCI	(25% E)	) ₂ MgBr	-78 to 0°, 3 h	$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	9) 639
c,	n-C₄H₂MgBr (10% C)		THF, -5°, 1 h	$n-C_{5}H_{13}CO_{2}H + (44) Br(CH_{2})_{2}CO_{2}H (40)$	-) 167 ))

TABLE I. COPPER-CATALYZED REACTIONS OF GRIGNARD REAGENTS (Continued)

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
	n-C.H.MgBr	THF, 0°, 15 min	$n-C_6H_{13}CO_2H$	(90)	166
	(2% B) i-C ₃ H ₃ MgCl (10% C)	THF, -5°, 1 h	<i>i</i> -C ₃ H ₇ (CH ₂ ) ₂ CO ₂ H	(82)	167
	MgBr (10% C)	Ether, -5°, 1 h	ОН	()	167
	t-C ₄ H ₂ MgCl (2% B)	THF, 0°, 15 min	t-C ₄ H ₉ (CH ₂ ) ₂ CO ₂ H	(85)	166
	(2% B)	THF, 0°, 15 min	(CH ₂ ) ₂ CO ₂ H	(59)	166
(2 eq)	BrMg(CH ₂ ) ₈ MgBr	THF, 0°, 3 h	C2H3O2C(CH2)12CO2C2H5 *	(68)	640
_0	(10% A) BrMg(CH ₂ ) ₉ MgBr (10% A)	THF, 0°, 3 h	C ₂ H ₅ O ₂ C(CH ₂ ) ₁₃ CO ₂ C ₂ H ₅ *	(63)	640
	CIMg(CH ₂ ) ₅ CIMg(CH ₂ ) ₅	THF, 0°, 3 h	C ₂ H ₅ O ₂ C(CH ₂ ) ₇ C ₂ H ₅ O ₂ C(CH ₂ ) ₇	(50)	640
C ₃ F ₇ OCF(CF ₃ )COF	(10% A) C₄F₃MgBr (10% B)	THF, ether, -20°, 18 h	C ₆ F ₅ COCF(CF ₃ )OC ₅ F ₇	(92)	641
SO ₂ C ₆ H ₅	n-C₄H₂MgBr (10% E)	Ether, THF, 0 to 10°	n-C ₆ H ₁₃ CH(SO ₂ C ₆ H ₅ ) ₂	(82)	642
C2H3CH=N OCH	C ₆ H ₅ MgBr (10% E) 3 ²	THF, -30°, 2 h	C ₆ H ₅ II N _{~OH}	(99)	643
HN CO ₂ CH ₂ C ₆ H ₅	C,H,MgCl (6 eq) (5% E)	THF, DMS (20:1), -23°, 2 h	HN CO ₂ CH ₂ C ₆ H ₅ CO ₂ CH ₂ C ₆ H ₅	(55)	644
C ₆ H ₅ N CO ₂ CH ₂ C ₆ H ₅	i-C ₃ H ₇ MgCl (5 eq) (4% E)	THF, DMS (20:1), -23°, 2 h	C ₆ H ₅ CO ₂ CH ₂ C ₆ H ₅	(83)	644
OP(O)(OC ₂ H ₅ ) ₂	C ₆ H₃CH₂MgCl (5 eq) (10% D)	THF	C ₆ H ₅ CH ₂ CH ₂ CH ₂ CH=C=CH ₂ +	(72) (12)	645
	C ₆ H ₅ CH ₂ MgCl (5 eq) (20% E)	THF	CH ₂ C ₆ H ₅ C ₆ H ₅ CH ₂ CH ₂ CH=C=CH ₂ +	(<3) (50)	645
	C _e H ₁₁ MgBr (4 eq) (20% D)	THF	$C_6H_{11}CH_2CH=C=CH_2 + C_6H_{11}$	(23) (7)	645
10					

TABLE I. COPPER-CATALYZED REACTIONS OF GRIGNARD REAGENTS (Continued)



TABLE I. COPPER-CATALYZED REACTIONS OF GRIGNARD REAGENTS (Continued)

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
, CICO ₂ C ₂ H ₅	i-C,H,MgCl (5% D)	THF, ether, 0°, 15 min	$\begin{bmatrix} C_{3}H_{7}-i\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	0) 140
, CICO ₂ C ₆ H ₁₃ -n , CICO ₂ C ₆ H ₅	C,H,MgBr (5% D)	THF, ether, 0°, 15 min	$\begin{bmatrix} C_6H_5 \\ \hline COC_6H_{13}-n \\ \hline \\ N \\ \hline \\ CO_2C_6H_5 \\ \hline \\ C_6H_5 \end{bmatrix}^{\prime} \begin{pmatrix} (44) \\ (44) \\ \hline \\ (44) \\$	141 0)
C ₂ H ₅ (CH ₂ ) ₂ CO ₂ H + Cl	- (5% D)	—		1) 650
CN OCH3	r-C₄H₄MgCl (2% C)	1. THF, reflux, 14 h 2. H ⁺ , H₂O	COC ₄ H ₉ - <i>t</i> OCH ₃ (9	9) 649
		F. Conjugate Addition Reactions		
С	n-C ₆ H ₁₃ Br (3.5% E) C ₆ H ₃ MgBr (3.5% E)	THF, HMPA, (CH ₃ ) ₃ SiCl (2 eq), -78°, 2 h THF, HMPA, (CH ₃ ) ₃ SiCl (2 eq), -100°, 2 h	$n-C_{6}H_{13}$ (8) 94:6 E:Z $C_{6}H_{5}$ (9) (9) (9) (9)	3) 157 0) 157
CO2CH3 NHCOCH3	<i>n</i> -C₄H₄MgBr (2 eq) (5% D)	Ether, C ₆ H ₆ , 0°, 30 min, then D ₂ O	n-C ₄ H ₉ CH ₂ CD CO ₂ CH ₃ (6)	5) 151
	C ₆ H ₅ MgBr (2 eq) (5% D)	Ether, C ₆ H ₆ , 0°, 30 min, then CH ₃ I	C ₆ H ₅ CH ₂ C(CH ₃ ) (6) NHCOCH ₃	2) 151
	<i>i</i> -C₃H₂MgCl (2 eq) (5% D)	THF, 0°, 30 min	i-C ₃ H ₇ CH ₂ CH (6 NHCOCH ₃	1) 151

TABLE I. COPPER-CATALYZED REACTIONS OF GRIGNARD REAGENTS (Continued)

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)		Refs
R-CH=CHCO ₂ C ₂ H ₅	C ₆ H ₅ MgBr (5% D)	Ether, $-10^{\circ}$	C ₆ H ₅ CHRCH ₂ CO ₂ C ₂ H ₅ (D-manno-)	(89)	153
$R = 0 + 10^{-3}$	C ₆ H ₁₁ MgBr (5% D)	Ether, -70°, 5 h	C ₆ H ₁₁ CHRCH ₂ CO ₂ C ₂ H ₅ (mixture of D-manno- and D-graphing)	(60)	153
D-arabino-	i-C ₃ H ₇ MgBr	Ether, -70°, 5 h	i-C ₃ H ₇ CHRCH ₂ CO ₂ C ₂ H ₅	(70)	153
	(5% D) <i>t-C₄H₂MgCl (5% D)</i>	Ether, $-70^{\circ}$ , 5 h	(D-giuco) t-C ₄ H ₂ CHRCH ₂ CO ₂ C ₂ H ₅ (D-manno-)	(37)	153
$CH_2 \neq CO_2CH_3$	C₅H₅MgBr (0.5% B)	Ether, -15°, 1 h, then C ₆ H ₅ CHO, -25 to 25°	C ₆ H ₅ CO ₂ CH ₃ 20:80 E:Z	(80)	651
	MgBr (0.5% B)	Ether, -15°, 1 h, then C ₆ H ₃ CHO, -25 to 25°	Si(CH ₃ ) ₃ CO ₂ CH ₃ CO ₂ CH ₃	(84)	651
С	<i>п</i> -С ₆ H ₁₃ MgBr (3.5% E)	THF, HMPA, (CH ₃ ) ₃ SiCl (2 eq), -78°, 2 h	n-C ₆ H ₁₃ OSi(CH ₃ ) ₃ 96:4 E:Z	(89)	157
СНО	C ₆ H ₅ MgBr (3.5% E)	THF, HMPA, (CH ₃ )₃SiCl (2 eq), −78°; 2 h	C ₆ H ₅ 87:13 E:Z	(89)	157
<i>₹</i>	<i>n-</i> C₄H₄MgBr (3.5% E)	THF, HMPA, (CH ₃ ) ₃ SiCl (2 eq), -78°, 2 h	n-C4H9 28:72 E:Z	(96)	157
	<i>n</i> -C ₆ H ₁₃ MgBr (3.5% E)	THF, HMPA, (CH ₃ ) ₃ SiCl (2 eq), -78°, 2 h	73-77 F-7	(91)	157
	J~MgCl	THF, -78°, 2.5 h	Jul .	(66)	143
$\sim$	(25% E) C ₄ H ₂ MgBr	THF, HMPA, (CH3),SiCl	C ₆ H ₅ CH(CH ₃ )CH ₂ CO ₂ CH ₃	(76)	157
CO2CH3	(3.5% E) CH ₃ MgI	$(2 \text{ eq}), -78^\circ, 3 \text{ h}$ Ether, $-20^\circ, 2.5 \text{ h}$	i-C ₄ H ₉ CON(Ts)CH ₃	(79)	652
CON(1s)CH	3 (3% D) C ₆ H₅MgBr (3% D)	Ether, $-20^{\circ}$ , 2.5 h	C ₆ H ₃ CH(CH ₃ )CH ₂ CON(T ₅ )CH ₃	(76)	652
	CH ₃ MgI (3% D)	Ether, -20°, 2.5 h	N TS	(73)	652
CH3CH=CHCO2C2H5	n-C4H9MgBr (2% B)	Ether, -30°, 40 min, then CH ₃ S(O)Cl, -78 to 0°	n-C4H9 CO2C2H5	()	653
H N-C ₆ H ₅ CO ₂	n-C4H9MgBr (5% D) CH3	1. Ether, -78°, 4 h 2. HCl, H ₂ O	OHC CO ₂ CH ₃ n-C ₄ H ₉ 93% ee	(83)	654

TABLE I. COPPER-CATALYZED REACTIONS OF GRIGNARD REAGENTS (Continued)

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)		Refs
C,					
	(25% E)	THF, -78 to 0°, 16 h	in the second se	(77)	143
	BrMg (CH ₂ ) ₃ Cl (25% E)	THF, -78°, 2-3 h		(54)	655
SC ₆ H ₅	n-C _e H ₁₅ MgBr (5% B)	THF, 65°, 30 min	SC ₆ H ₅	(95)	656
	BrMg(CH ₂ ) ₆ OTHP (5% B)	THF, 65°, 30 min	CCH ₂ ) ₆ OTHP	(41)	656
Lif	C ₂ H ₃ MgBr (0.05% B)	Ether, 25°, 30 min	s-C4H9 LO	(83)	657
	C₅H₅MgBr (5% D)	Ether, -20°, 2.5 h	C ₆ H ₅ N Ts	(70)	652
	p-CH₃OC₅H₄MgBr (5% D)	Ether, -20°, 2.5 h	P-CH3OC6H4	(74)	652
° ← SC4H9	-M MgBr (2.5 eq) (33% CH ₃ Cu)	Ether, 0°, 15 min	°=√√_	(64)	658
С2Н5	<i>п</i> -С ₄ H ₁₃ MgBr (3.5% E)	THF, HMPA, (CH ₃ ),SiCl (2 eq), -100°, 2 h	n-C ₆ H ₁₃ C ₂ H ₅	(89)	157
	C ₆ H ₁₁ MgBr (3.5% E)	THF, HMPA, (CH ₃ ) ₃ SiCl (2 eq), - 100°, 2 h		(80)	157
	CH ₃ CH ₃ O MgBr (5% B)	THF, 0–25°, 1 b	CO2CH3	(53)	659
			COCH.		

TABLE I. COPPER-CATALYZED REACTIONS OF GRIGNARD REAGENTS (Con	tinued
---------------------------------------------------------------	--------

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
(CH ₃ ) ₂ C	O CH ₃ MgI (0.05% B)	Ether, 25°, 30 min	$ \begin{array}{c}                                     $	657
$\mathbf{v}$	MgBr (10% D)	THF, P(C ₄ H ₉ -n) ₃ , -40°, 3 h	of (7)	154
òc₂H₅	BrMg (CH ₂ ) ₃ Cl (25% E)	THF, BF ₃ · Et ₂ O (1.2 eq), - 78°, 2-3 h	(CH ₂ ) ₃ Cl (33)	655
	MgBr (5% D)	<ol> <li>THF, DMS, -60°, 1.5 h</li> <li>BrCH₂CO₂R, HMPA, 25°, 18 h</li> </ol>	(78)	660
Å	BrMg (CH ₂ ) ₃ Cl (25% E)	THF, BF₃ • Et₂O (1.2 eq), −78°, 2–3 h	$R = t-C_{4}H_{9}, 2:98 \ cis:trans$ $R = CH_{3}, 12:88 \ cis:trans$ $O$	655
	i-C₄H₀MgBr (10% D)	Ether, P(C ₆ H ₅ ) ₃ , 0°	(43)	661
n-C3H7	THO MgCl	THF, DMS, -25°, 2 h	л-С ₃ Н ₇ (84)	662
	(10% D) H ₅ Cl(CH ₂ ) ₄ MgBr H ₅ (5% D)	Ether, $P(C_4H_9-n)_3$ , -10 to 20°, 3 h	$CI(CH_2)_4 \xrightarrow{CO_2C_2H_5}_{CO_2C_2H_5} (52)$	663
0	TMS MgBr (5% D)	Ether	0 THS (88)	664
	C ₆ H ₅ CH ₂ MgCl (-% B)	Ether, -78 to 25°	(69)	665
	H ₃ CH ₃ MgBr (2.5% E)	THF, DMS, -78°, 1 h	CO ₂ CH ₃ (23)	666
	C ₂ H ₃ MgBr (2.5% E)	THF, DMS, -78°, 1 h	$\bigcup_{S}^{O} CO_2CH_3 $ (64)	666

TABLE I. COPPER-CATALYZED REACTIONS OF GRIGNARD REAGENTS (Continued)

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
	i-C₃H7MgBr (2.5% E)	THF, DMS, -78°, 1 h	CO ₂ CH ₃ S ^C ₃ H ₇ <i>i</i>	(57)	666
	C₅H₅MgBr (2.5% E)	THF, DMS, -78°, 1 h	CO2CH3	(68)	666
Ů	BrMg (CH ₂ ) ₃ Cl (25% E)	THF, -78°, 2-3 h	(CH ₂ ) ₃ Cl	(81)	655
	CH3MgI (-% D)	1. Ether, 0°, 30 min, then 2CHO	OH Junity	()	667
	Cl Cl (-% D)	-		()	668
c,	BrMg (CH ₂ ) ₃ Cl (25% E)	THF, BF₃ · Et₂O, −78°, 2–3 h	CCH ₂ ) ₃ CI	(55)	655
Å	BrMg (CH ₂ ) ₃ Cl (25% E)	THF, BF ₃ · Et ₂ O, -78°, 2-3 h	(CH ₂ ) ₃ Cl	(37)	655
	(25% E)	THF, -78 to 0°, 16 h	OSI(CH.)	(74)	143
	o-CH3C6H4MgBr (3.5% E)	THF, HMPA, (CH ₃ ) ₃ SiCl (2 eq), -78°, 3 h	C ₆ H ₄ CH ₃ -o	(77)	157
	n-C ₃ H ₇ MgBr (3.5% E)	THF, HMPA, (CH ₃ ) ₃ SiCl (2 eq), -78°, 3 h	OSi(CH ₃ ) ₃ -C ₃ H ₇ -n	(85)	157
Cycloheptenone	0 0––––––– MgCl (25% E)	THF, -78°, 2.5 h	Ċ	(76)	143
Ŷ	MgBr (10% E)	<ol> <li>1. THF, -78°</li> <li>2. (CH₃)₃SiCl, (C₂H₅)₃N, HMPA, -78 to 25 °</li> </ol>	OSi(CH ₃ ) ₃	(81)	669

TABLE I. COPPER-CATALYZED REACTIONS OF GRIGNARD REAGENTS (Continued)



TABLE I. COPPER-CATALYZED REACTIONS OF GRIGNARD REAGENTS (Continued)

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)		Refs
C ₆ H ₅ CON(Ts)CH ₃	CH ₃ MgI (3.5% D)	Ether, -25°, 2.5 h	C ₆ H ₃ CH(CH ₃ )CH ₂ CON(Ts)CH ₃ OSi(CH ₃ ) ₃	(81)	652
A	<i>n</i> -C ₄ H ₉ MgBr (3.5% E)	THF, HMPA, (CH ₃ ) ₃ SiCl (2 eq), -78°, 2-4 h	C4Hg-n	(89)	157
	MgBr (3.5% E)	THF, HMPA, (CH ₃ ) ₃ SiCl (2 eq), -78°, 2-4 h		(97)	157
	(CH ₃ ) ₃ SiCH ₂ MgCl (2.5% C)	Ether, 0-25°, 30 min	CH ₂ Si(CH ₃ ) ₃ OSi(CH ₂ ) _b	(77)	678
	(5% D, TMEDA)	THF, TMEDA, (CH ₃ ) ₃ SiCl, -78°	A	(80)	679
	Si(CH ₃ ) ₃ MgBr (10% D)	-	Si(CH ₃ ) ₃	(80)	577
	BrMg		Si(CH ₃ )3	(62)	577
	BrMg (CH ₂ ) ₃ Cl (25% E)	THF, BF₃•Et₂O, −78°, 4.5 h	(CH ₂ ) ₃ Cl	(45)	655
	MgCl (10% D)	THF, DMS, -60 to 0°, 18 h	Å,	(52)	662
	Si(CH ₃ ) ₂ CH ₂ MgCl (10% D)	<ol> <li>Ether, 20°, 1 h</li> <li>KHF₂, CF₃CO₂H</li> <li>30% H₂O₂</li> </ol>	ОН	(68)	680
Ş	MgBr (3.5% E)	THF, (CH3)3SiCl (4 eq), - 78°, 3 h	Å.	(71)	157
r-C₄H9O2C ⁻	///MgBr (25% C)	THF, -28 to -12°, 3.5 h	°C4H9O2C'	(60)	152

TABLE I. COPPER-CATALYZED REACTIONS OF GRIGNARD REAGENTS (Continued)



TABLE I. COPPER-CATALYZED REACTIONS OF GRIGNARD REAGENTS (Continued)

" The yield was estimated.

^b The de was determined by ¹³C NMR.

' The product was obtained by esterifying the crude diacid with ethanol.

"The product was obtained by treating the crude product with 3 N HCl.

' The yield is of the isolated pyridine after treatment with S8.

	Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)		Refs
		A. Substit	utions with Carbonyl-Containing Substrate	25		
2						
	CO2	(1 eq C)	THF, HMPA, $P(OC_2H_5)_3$ , 0.1 eq, $-45^\circ$ , 4 h	HO2C	(90)	685
	CS ₂	t-C.H.MgCl (0.5 eq C)	THF, - 50°, 30 min, then CH ₃ I, 25°	t-C ₄ H ₉ C(S)SCH ₃	(81)	142
		t-C4H9MgCl (1 eq C)	THF, −50°, 30 min, then CH ₃ I, 25°		(80)	142
		MgBr	THF, -50°, 30 min, then CH ₃ I, 25°		(95)	142
		(1 eq C)				
1	CH3COCI	C ₆ H ₅ MgBr	THF, -8 to 0°, 2 h	C,H,COCH,	(61)	686
		n-C ₆ H ₁₃ MgBr (1 eq CH ₃ Cu)	THF, ether, 25°, 30 min	<i>n</i> -C ₆ H ₁₃ COCH ₃	(75)	163
3	C ₂ H ₅ C(S)SCH ₃	CH ₃ MgBr	Ether, 0°, 1 h	C ₂ H ₅ C(CH ₃ ) ₂ SH	(85)	164
		(0.5 eq CuOTf) n-C ₄ H ₂ MgBr	Ether, 0°, 1 h	C2H3C(C4H3-n)2SH	(16)	164
		(0.5 eq CuOIf) C _s H ₅ MgBr (0.5 eq CuOTf)	Ether, 0°, 1 h	C2H5C(C2H5)2SH	(77)	164
	сr°	п-С,Н₅MgCl (0.5 еq B)	THF, DMS, -40°	n-C ₄ H ₉ (CH ₂ ) ₂ CO ₂ H	(95)	167
	U	<i>i</i> -C₃H₂MgBr (0.5 eq D)	THF, DMS, -30°, 2 h	<i>i</i> -C ₃ H ₇ (CH ₂ ) ₂ CO ₂ H	(79)	168
		MgBr (0.5 eq D)	THF, DMS, -30°, 2 h	(CH ₂ ) ₂ CO ₂ H	(88)	168
		MgBr	THF, DMS, -30°, 2 h	(CH2)2CO2H	(75)	168
		(0.5 eq B)	THF, DMS, $-50$ to $-10^{\circ}$ , 2 h	∕(CH ₂ ) ₂ CO ₂ H	(56)	167
ł.						
	L.	<i>n</i> -C ₄ H ₉ MgBr (0.5 eq D)	THF, DMS, -30 to 0°, 2 h	n-C ₃ H ₁₁ CH(CH ₃ )CO ₂ H	(85)	168
		MgBr (0.5 cg D)	THF, DMS, -30 to 0°, 2 h	CH2CH(CH3)CO2H	(72)	168
	C ₂ H ₃ O ₂ C(CH ₂ ) ₂ - COCI	$(CH_3)_3SiCH_2MgCl \cdot$ (1 eq D)	Ether, $-78$ to $0^{\circ}$	C ₂ H ₅ O ₂ C(CH ₂ ) ₂ COCH ₂ Si(CH ₃ ) ₃	(72)	687
	n-C ₃ H ₇ COCl	TMSCH ₂ MgCl (0.5 eq D)	Ether, $-78$ to 0°, 1 h	n-C ₃ H ₇ COCH ₂ TMS	(83)	688
i.	ı-C₄H₄COCI	C ₆ H ₅ MgBr (1 eq CH ₃ Cu)	THF, ether, 25°, 30 min	ı-C₄H₅COC₅H₅	(93)	163
	Ľ	MgBr (0.5 eq D)	THF, DMS, -30 to 0°, 2 h	CH(CH ₃ )CH(CH ₃ )CO ₂ H	(17)	168

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
	n-C₄H₀MgBr (0.5 eq D)	THF, DMS, -30 to 0°, 2 h	<i>n</i> -C ₅ H ₁₁ C(CH ₃ ) ₂ CO ₂ H	(82)	168
	MgBr (0.5 eq D)	THF, DMS, $-30$ to $0^{\circ}$ , 2 h	CH2C(CH3)2CO2H	(48)	168
C,					
C₀H₃COCI	t-C,H₂MgBr (1 eq CH₃Cu)	THF, ether, 25°, 30 min	C ₆ H ₅ COC ₄ H ₉ - <i>t</i>	(93)	163
p-O₂NC₀H₄COCI	C ₆ H ₅ MgBr (0.5 eq D)	THF, $-8$ to 0°, 2 h	p-O₂NC6H₄COC6H5	(76)	686
C ₆ H ₅ C(S)SCH ₃	CH ₃ MgBr (0.5 eq CuOTf)	Ether, 0°, 1 h	C ₆ H ₅ C(CH ₅ ) ₂ SH	(71)	164
C,			hat have a start with the second	40.00	2014
( <i>i</i> -C ₃ H ₇ ) ₂ (CH ₃ )- CCOCI	CH ₃ MgI (1 eq B)	Ether, $-5$ to $0^{\circ}$	( <i>i</i> -C ₃ H ₇ ) ₂ (CH ₃ )CCOCH ₃	(88)	162
		T.1	(	(05)	
(i-C ₃ H ₇ ) ₂ (C ₂ H ₅ )- CCOCl	I-C ₄ H ₉ CH ₂ MgCl (1 eq B)	Ether, $-5$ to $0^{\circ}$	$(i-C_3H_7)_2(C_2H_5)CCOCH_2C_4H_5-t$	(85)	162
CH30 CH2COCI			CH30 CH2COC4H9-S		
Ş	s-C ₄ H ₉ MgBr (1 eq C)	Ether	Ŷ	(72)	689
OCH ₃			OCH ₃		
(t-C4H6)(i-C2H7)CCOCI	t-C.H.MeCl	Ether, -5 to 0°	(t-C4Ha)(i-C2H7)CCOC4Ha-t	(31)	162
l C₂H₅	(1 eq B)		C ₂ H ₅		
C ₁₅			C 4 -		
$n-C_{3}H_{7}CCH_{2}COCI$ $C_{4}H_{9}-n$	n-C ₄ H ₉ (C ₂ H ₅ ) ₂ CMgCl (1 eq B)	Ether, reflux	^{суз111-n} n-C ₃ H ₇ CCH ₂ COC(C ₂ H ₅ ) ₂ C ₄ H ₉ -n С ₄ H ₉ -n	(65)	690
		without Departieurs of Allelia Colorest			
	B. Substi	union Reactions of Allytic Substrates			
C,	B. Substi	union Reactions of Augue Substrates			
C ₃ Br Br Br	B. Substi p-CH ₃ OC ₆ H ₄ MgBr (0.5 CuI · DMS)	Ether, -10 to 25°, 4 h	<i>p</i> -CH₃OC ₆ H₄CH₂≪Br	()	691
$C_{3}$ $Br$ $Br$ $Br$ $CH_{2}=C = \bigvee^{I}$ $OCH_{3}$	B. Substi p-CH3OC4H4MgBr (0.5 CuI · DMS) n-C4H9MgCl (1 eq I)	Ether, -10 to 25°, 4 h THF, HMPT, -85°, 1 h	<i>p</i> -CH ₃ OC ₆ H ₄ CH ₂ ≪Br n-C ₄ H ₉ CH ₂ C≡COCH ₃	(—) (80)	691 177, 178
$C_{3}$ $Br$ $Br$ $CH_{2}=C=\bigvee_{OCH_{3}}^{I}$	B. Substi p-CH ₃ OC ₆ H ₄ MgBr (0.5 CuI · DMS) n-C ₄ H ₂ MgCl (1 eq 1) i-C ₃ H ₇ MgCl	Ether, -10 to 25°, 4 h THF, HMPT, -85°, 1 h THF, HMPT, -85°, 0.8 h	p-CH ₃ OC ₆ H ₄ CH ₂ ≪Br n-C ₄ H ₉ CH ₂ C≡COCH ₃ i-C ₃ H ₇ CH ₂ C≡COCH ₃	(—) (80) (65)	691 177, 178 177,
$C_{3}$ $Br$ $Br$ $Br$ $CH_{2}=C=\bigvee_{0}^{I}CH_{3}$	<ul> <li>B. Substi</li> <li>p-CH₃OC₄H₄MgBr (0.5 CuI · DMS)</li> <li>n-C₄H₉MgCl (1 eq I)</li> <li>i-C₃H₇MgCl (0.5 eq C, 1 eq LiBr)</li> <li>t-C₄H₉MgCl (1 eq I)</li> </ul>	Ether, - 10 to 25°, 4 h THF, HMPT, -85°, 1 h THF, HMPT, -85°, 0.8 h THF, -85°, 1 h	$p$ -CH ₃ OC ₆ H ₄ CH ₂ - $\mathcal{H}_{Br}$ $n$ -C ₄ H ₉ CH ₂ C $\equiv$ COCH ₃ $i$ -C ₃ H ₇ CH ₂ C $\equiv$ COCH ₃ $i$ -C ₄ H ₉ CH ₂ C $\equiv$ COCH ₃	(—) (80) (65) (70)	691 177, 178 177, 178 177, 178
$C_{3}$ $Br$ $Br$ $CH_{2}=C = \bigvee_{0}^{I} OCH_{3}$	B. Substi p-CH ₃ OC ₄ H ₄ MgBr (0.5 CuI · DMS) n-C ₄ H ₉ MgCl (1 eq I) <i>i</i> -C ₃ H ₇ MgCl (0.5 eq C, 1 eq LiBr) <i>i</i> -C ₄ H ₉ MgCl (1 eq I) MgCl (1 eq I)	Ether, -10 to 25°, 4 h THF, HMPT, -85°, 1 h THF, HMPT, -85°, 0.8 h THF, -85°, 1 h THF, TMEDA, -50°, 1 h	$p-CH_3OC_6H_4CH_2 \longrightarrow B_T$ $n-C_4H_9CH_2C\equiv COCH_3$ $i-C_3H_7CH_2C\equiv COCH_3$ $i-C_4H_9CH_2C\equiv COCH_3$ $i-C_4H_9CH_2C\equiv COCH_3$	(—) (80) (65) (70) (67)	691 177, 178 177, 178 177, 178 177,
$C_{3}$ $Br$ $Br$ $CH_{2}=C = \bigvee_{OCH_{3}}^{I}$	B. Substi p-CH ₃ OC ₄ H ₄ MgBr (0.5 CuI · DMS) n-C ₄ H ₉ MgCl (1 eq I) <i>i</i> -C ₃ H ₃ MgCl (0.5 eq C, 1 eq LiBr) <i>t</i> -C ₄ H ₉ MgCl (1 eq I) MgCl (1 eq I) C ₄ H ₃ MgCl (1 eq I)	Ether, -10 to 25°, 4 h THF, HMPT, -85°, 1 h THF, HMPT, -85°, 0.8 h THF, -85°, 1 h THF, TMEDA, -50°, 1 h THF, -50°, 1 h	$p-CH_3OC_6H_4CH_2 \longrightarrow B_T$ $n-C_4H_9CH_2C\equiv COCH_3$ $i-C_3H_7CH_2C\equiv COCH_3$ $i-C_4H_9CH_2C\equiv COCH_3$ $i-C_4H_9CH_2C\equiv COCH_3$ $CH_2C\equiv COCH_3$ $C_6H_5CH_2C\equiv COCH_3$	(—) (80) (65) (70) (67) (77)	691 177, 178 177, 178 177, 178 177, 178 177, 178 177, 178
$C_3$ Br $CH_2=C= I$ $OCH_3$ $C_4$	B. Substi p-CH ₃ OC ₄ H ₄ MgBr (0.5 CuI · DMS) n-C ₄ H ₉ MgCl (1 eq I) i-C ₃ H ₇ MgCl (0.5 eq C, 1 eq LiBr) i-C ₄ H ₉ MgCl (1 eq I) MgCl (1 eq I) C ₄ H ₃ MgCl (1 eq I) C ₄ H ₃ MgCl (1 eq I)	Ether, -10 to 25°, 4 h THF, HMPT, -85°, 1 h THF, HMPT, -85°, 0.8 h THF, -85°, 1 h THF, TMEDA, -50°, 1 h THF, -50°, 1 h	$p-CH_3OC_6H_4CH_2 \longrightarrow B_T$ $n-C_4H_9CH_2C \equiv COCH_3$ $i-C_3H_7CH_2C \equiv COCH_3$ $i-C_4H_9CH_2C \equiv COCH_3$ $i-C_4H_9CH_2C \equiv COCH_3$ $C_6H_5CH_2C \equiv COCH_3$	(—) (80) (65) (70) (67) (77)	691 177, 178 177, 178 177, 178 177, 178 177, 178 177, 178
C ₃ Br Br CH ₂ =C $\stackrel{I}{\longrightarrow}$ CH ₂ =C $\stackrel{I}{\longrightarrow}$ OCH ₃ CL ₂ =C $\stackrel{CO_2C_2H_5}{\longleftarrow}$ CH ₂ =CH ₂ $\stackrel{CO_2C_2H_5}{\longleftarrow}$	B. Substi p-CH ₃ OC ₄ H ₄ MgBr (0.5 CuI · DMS) n-C ₄ H ₉ MgCl (1 eq I) <i>i</i> -C ₃ H ₇ MgCl (0.5 eq C, 1 eq LiBr) t-C ₄ H ₉ MgCl (1 eq I) MgCl (1 eq I) C ₅ H ₃ MgCl (1 eq I) n-C ₄ H ₉ MgCl (0.5 eq D)	Ether, $-10$ to 25°, 4 h THF, HMPT, $-85^{\circ}$ , 1 h THF, HMPT, $-85^{\circ}$ , 0.8 h THF, $-85^{\circ}$ , 1 h THF, $-85^{\circ}$ , 1 h THF, TMEDA, $-50^{\circ}$ , 1 h THF, $-50^{\circ}$ , 1 h	$p-CH_3OC_6H_4CH_2 \longrightarrow B_T$ $n-C_4H_9CH_2C \equiv COCH_3$ $i-C_3H_7CH_2C \equiv COCH_3$ $i-C_4H_9CH_2C \equiv COCH_3$ $C_6H_5CH_2C \equiv COCH_3$ $n-C_4H_9CH_2 \longrightarrow CO_2C_2H_5$ $n-C_4H_9CH_2 \longrightarrow CH_2$	(—) (80) (65) (70) (67) (77)	691 177, 178 177, 178 177, 178 177, 178 177, 178 177, 178 598

TABLE II. SUBSTITUTION AND CONJUGATE ADDITIONS OF	F STOICHIOMETRIC CU(I)-RMgX REAGENTS	(Continued)

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
	0.0056.00	Television and the	CH2 CH2		
	t-C ₄ H ₂ MgCl (1 eq I)	THF, 20°, 30 min	t-CH OCH	(80)	176
Mag	W - CUM-CI	<b>THE 100 101</b>	n-C3H7		
O2CCH3	$\begin{array}{c} H_3 & n - C_3 H_7 MgC I \\ (1 eq I) \end{array}$	THF, $-70^{\circ}$ , 12 h	H ^{CH2O2CCH3}	(47)	173
			96:4 E:Z		
CH ₃ CO ₂	n-C ₃ H ₇ MgCl	THF, -70°, 12 h	+		
-0 ₂ 0	$CCH_3$ (1 eq I)		C ₃ H ₇ -n		
			n-C3H7	(45)	173
			-O ₂ CCH ₃		
CH3CO2	-O2CCH3		98:2		
	$n-C_{2}H_{7}MgCl$ (1 eq I)	THF, -70°, 12 h	$\gamma O_2 CCH_3 C_3 H_{7} n$	(75)	173
	n-C-H-MgCl	Ether 70°, 12 h	O2CCH3		
	(1 eq I)		С ₃ H ₇ -n		
			n-C ₃ H ₇	(37)	173
			-O ₂ CCH ₃		
		and allowed	82:18		
	(1 eq I)	THF, -70°, 12 h	$V = O_2 CCH_3$ $C_6 H_{11}$	(68)	173
	C ₆ H ₃ MgBr	<b>THF</b> , −70°, 12 b	С6Н5О2ССН3	(31)	173
	(1 eq I) COnCoHr		<u> </u>	(/	
∩ N→s^-	m-C,H,MgBr	THF, -15°	n-C4H9 =CH2	(83)	172b
Ś	(1.5 eq C)		$CO_2C_2H_5$		
	n-C _s H ₁₇ MgBr (1.5 eq C)	THF, -15°	CO-C-H-	(88)	172b
N s^	$\checkmark$		1		
s	n-C _s H ₁₇ MgBr (3 eq C)	THF, 0°, 1.5 h	C ₈ H ₁₇ -n	(85)	172a
N-01	m		N		
s	n-C ₈ H ₁₇ MgBr (1 eq C)	THF, 0°, 30 min	C ₈ H ₁₇ - <i>n</i> +	(87)	171a
			n-C8H17		
CH2=C=CHC	H₂OS(O)CH₂		100:0* 5:95*		
	MeCl	THE 50 to 20°, 30 min	<u> </u>	(00)	104
	(1 eq I)	, , , , , , , , , , , , , , , , , , , ,	<u>_</u>	(90)	104
Q	CH ₃		/		
CH2=C=C	H(CH ₃ )OS(O)CH ₃		CH ₂		
	t-C.H.MgCl	THF, 20°, 30 min	t-C.H. OCH.	(75)	176
	(1 eq 1)		CH ₂		
	C ₆ H ₅ MgBr (1 eq I)	THF, 20°, 30 min	C.H. OCH.	(95)	176
	v1.9		75:25 E:Z		

TABLE II. SUBSTITUTION AND CONJUGATE ADDITIONS OF STOICHIOMETRIC CU(I)-RMgX REAGENTS (Continued)

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
_=C=_Br 27% ee	i-C ₃ H ₇ MgBr (1 eq I)	THF, -70°, 30 min	C ₃ H ₇ -i C=CH 25% ee	()	692
CF ₃ CO ₂ ( <i>l</i> -menthyl)	<i>n</i> -C ₈ H ₁₇ MgBr (0.5 eq D)	Ether, (CH ₃ ),SiCl, 0°, 3 h	$CF_2$ <i>n</i> -C ₉ H ₁₉ CO ₂ ( <i>l</i> -menthyl)	(84)	693
c, (C↓ ^N )→s^→=	₅CO2C2H5 n-C4H9MgBr (1.5 eq C)	THF, –15°	n-C4H9 CH2 CO2C2H5	(78,:82*)	172ь
CH ₂ CH ₂ CH ₂	₂ C,H,CH₂MgCl (1 eq C)	THF, 25°, 30 min	C ₆ H ₅ CH ₂ C ₂ H ₅	(73)	171a
~ 3	CIMgO(CH ₂ ) ₄ MgCl (1 eq C)	THF, 25°, 30 min	HO(CH ₂ ) ₄ C ₂ H ₅	(90)	171a
CH ₂	<i>n-</i> C ₄ H ₉ MgBr (0.5 eq D)	THF, -78°, 1 h	n -C4H9 CH2CO2H 89:11 E:Z	(92)	116
×	(0.5 eq D)	THF, -50°, 1 h	89:11 E:Z	(88)	116
	MgBr (0.5 eq D)	THF, -50°, 1 h	CO ₂ H + ()2CHCH ₂ CO ₂ H	(64)	116
Si(CH ₃ ) ₃ O ₂ CCH ₃ C ₂ H ₅	CH ₃ MgI (0.5 eq D)	<u> </u>	$\begin{array}{c} 81:19 \ E:Z \\ (CH_3)_3Si \\ C_2H_5 \\ C_2H_5 \\ C_2H_5 \end{array}$	(80)	694
L.	MgX (0.5 eq D)	THF, DMS, $-50^{\circ}$ , 1 h	Cl 91:9 E:Z	(77)	695
	(CH ₃ ) ₂ NN CuMgBr	1. THF, DMS, -100°, 2 h 2. 3 M aq. HCl	CO ₂ H +	(91)	696a
C ₆ R (CH ₂ ) _n Br Cl R = H, CH ₃ ; n = 1, 2	$\bigcup_{\substack{(1 \text{ eq } E)}}^{O} MgBr$		92:8 $\int_{(\text{mainly } E)}^{O} \frac{R}{(CH_2)_n} Br$	(46–63)	697b
CH ₂ =C=CCH ₃ C(CH ₃ ) ₂ OS	(O)CH3 C2H3MgBr (1 eq I)	THF, 20°, 30 min	CH ₂ C ₂ H ₅ OCH ₃	(80)	176

TABLE II. SUBSTITUTION AND CONJUGATE ADDITIONS OF STOICHIOMETRIC CU(I)-RMgX REAGENTS (Continued)

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
$CH_2 = C \xrightarrow{C_2H_5} CH_2OS(O)CH_3$	n-C,H,MgCl (1 eq I)	THF, -50 to 20°, 30 min	CH ₂ C ₂ H ₅ C ₄ H ₉ -n	(83)	184
	MgBr (0.5 eq D)	THF, DMS (10:1), -30 to 0°, 2.5 h	69:31 E:Z	(49)	115
	(0.5 eq D)	THF, DMS (10:1), -30 to 0°, 2.5 h	76:24 E:Z	(57)	115
	(0.5 eq D)	THF, DMS (10:1), -30 to 0°, 2.5 h	75:25 E:Z	(89)	115
	(0.5 eq D)	THF, DMS (10:1), -50 to -30°, 2 h	78:22 E:Z	(68)	115
Noto	C₅H₃MgBr (0.5 eq D)	THF, DMS (10:1), -30 to 25°, 1 h	C ₆ H ₅ 82:18 E:Z	(91)	117
	MgBr (0.5 eq D)	THF, DMS (10:1), -30 to 25°, 1 h	82:18 E:Z	(70)	117
	(0.5 eq D)	THF, DMS (10:1), -30 to 25°, 1 h	86:14 E:Z	(41)	117
	CH ₃ MgBr (0.5 eq D)	THF, DMS, -30°, 1 h	CO ₂ H + CO ₂ H 24:76 E:Z 8:92	(67)	650
	<i>n</i> -C₄H₄MgBr (0.5 eq D)	THF, DMS, -30°, 30 min	$n - C_4 H_9 + CO_2 H$ $n - C_4 H_9 + CO_2 H$	(84)	650
	∽ n-C₀HııMgBr (3 eq C)	THF, 0°, 1.5 h	3:97 E:Z 6:96	(80)	172a
	n-C ₄ H ₉ MgBr (1.5 eq C)	THF, -15°	n-C ₄ H ₉ CO ₂ C ₂ H ₅	(85)	1726
	CIMgO(CH ₂ ) ₄ MgCl (1 eq D)	THF, 25°, 30 min	HO(CH ₂ ) ₄ C ₃ H ₇ -n 98:2 E:Z	(75)	170
	CIMgO(CH ₂ ) ₆ MgCl (1 eq D)	THF, 25°, 5 h	HO(CH ₂ ) ₆ C ₃ H ₇ -n 98:2 E:Z	(75)	170
C₂H₅ →=c=	i-C₄H₄MgCl (1 eq I)	Ether, -70°, 30 min	C2H5	()	692
	TMSCH₂MgCl (1 eq I)	THF, 25°, 30 min	TMS	(95)	698

TABLE II.	SUBSTITUTION AND	CONJUGATE	ADDITIONS OF	STOICHIOMETRIC	CU(I)-RMgX REAGENTS	(Continued)

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
<b>C</b> ₇					
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	MgBr (0.5 eq D)	THF, DMS (20:1), -30°, 1 h	78:22 E:Z	(67)	117
	(0.5 eq D)	THF, DMS (20:1), -30°, 1 h	92:8 E:Z	(51)	117
\sim	CH ₃ MgBr (1 eq E)	THF, -20°, 5 h	-СТ_сн2со2н	(97) [,]	174
	MgBr (1 eq E)	THF, DMS (7:3), -20°, 5 h	CH2CO2H	(94) [,]	174
Ż	C2H3MgBr (1 eq E)	1. THF, -30 to 0°, 2 h 2. CH ₃ COCl, CH ₃ OH, 0°	C ₂ H ₅	(75)	699
(CH ₃) ₃ SiC≡C	OSi(CH ₃) ₃		(CH ₂)-SiCEC		
	√ s-C₄H₂MgCl (1 eq I)	THF, -30°, 1 h	CH ₂	()	177
	s-C,H,MgCl (1 eq I)	1. THF, −30°, 1 h 2. CH ₃ I	(CH ₃) ₃ SiCEC	(85)	177
(CH₃)₃SiCΞC ←C=	CH ₃ MgCl (1 eq I)	THF, -30°, 1 h	(CH ₃) ₃ SiC≡C 8:92 E:Z	()	177
	C2H3MgCl (1 eq I)	THF, -30°, 1 h	$(CH_3)_3SiC\equiv C$ C_2H_5 3:97 E:Z	(-)	177
	t-C₄H₄MgCl (1 eq I)	THF, -30°, 1 h	(CH ₃) ₃ SiC≡C C ₄ H ₉ -t	()	177
C,			4:96 E:Z		
-	CH ₃ MgBr (1 eq E)	THF, DMS (7:3), -20°, 5 h	XI_CH ₂ CO ₂ H	(73) ^e	174
	(1 eq E)	THF, DMS (7:3), -20°, 5 h	Charles and the second	(90)*	174
\sim	(1 eq E)	THF, DMS (7:3), −20°, 5 h	CH2CO2H	(83) [,]	174
(CH ₃) ₃ SiCEC	XOSI(CH ₃) ₃		(CH ₃) ₂ SiC=C		
	s-C.H.MgCl (1 eq I)	THF, -30°, 1 h		()	177
$CH_2 = C = C_4H_{9}-t$	CH3 i-C3H7MgCl (1 eq I)	THF, -50 to 20°, 0.5 h	r-C ₄ H ₉ CH ₂	(80)	184

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)	Refs
Cl (CH ₂) ₅ Br	n-C ₃ H ₇ MgBr (0.5 eq E)	THF, -78°	$n-C_{3}H_{7}$ (CH ₂) ₅ Br (80) 85:15 E:Z	697a
$C_{3}H_{11}-n$ $O_{2}CC_{4}H_{9}-t$	n-C ₄ H ₉ MgBr (0.5 eq D)	Ether, 0°, 1 h	$n-C_4H_9$ $C_5H_{11}-n$ (92) 66:33 E:Z	169
C,				
C)=c=< ^{−05(0)CH₃}	C ₂ H ₃ MgCl (1 eq I)	THF, -50 to 20°, 30 min	CH_2 (70) C_2H_5	184
C10				
$CH_2 = C = OCH_3$ $-OS(O)CH_3$ C_6H_5	CH ₃ MgCl (1 eq I)	THF, -10 to 20°, 30 min	CH ₂ OCH ₃ 90:10 E:Z (90)	176
	i-C ₂ H ₇ MgCl (1 eq I)	THF, 20°, 30 min	$\begin{array}{c} CH_2 \\ i - C_3 H_7 \\ OCH_3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	176
C4H9-t			95:5 E:Z	
TMSCEC))CH ₃		TMSCEC	
	C ₂ H ₃ MgCl (1 eq I)	THF, -30°, 1 h	98:2 E:Z C ₄ H ₉ -t ()	17
	n-C,H,MgBr (1 eq C)	THF, 0–25°, 30 min	n-C ₄ H ₉ (88, ^c 80 ⁴)	171
	n-C ₄ H ₉ MgBr (3 eq C)	THF, 0°, 1.5 h	(90)	172
	i-C ₃ H ₇ MgBr (3 eq C)	THF, 0°, 1.5 h	i-C ₃ H ₇ (83)	172
O2CC4H9-t	n-C,H,MgBr (0.5 eq D)	Ether, 0°, 1 h	$ \begin{array}{cccc} & C_4H_{9^{-n}} \\ & + \\ & 94:6 \end{array} $ (76)	16
	n-C₄H₂MgBr (0.5 eq D) Hg-t	Ether, 0°, 1.5 h	H C ₄ H ₉ -n 40:60 E:Z	16
C ₁₂	<u>~</u> 9		<u>~</u> 9	

	TABLE II.	SUBSTITUTION AND CONJUGATE ADDITIONS OF STOICHIOMETRIC CU(I)-RMgX REAGENTS	(Continued)
--	-----------	--	-------------

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)	R
C14				
C4H9-n O2CC4H9-1	CH₃MgI (0.5 eq D)	Ether, 0°, 3 h	40:60 E:Z	(62) 1
(CH ₂)10	(1 eq D)	THF, DMS, -25°, 12 h	CH ₂ OH	(99) 7
	(i-C3H7)3SiC≡CCH2MgBr (1 eq D)	THF, DMS, -78 to -20°, 12 h	$HOCH_2 (CH_2)_{10} (CH_2)_{1$	(79) 7
C ₁₅				
() OzCC4H9-r	n-C₄H₀MgBr (0.5 eq D)	Ether, 0°, 1 h	$\begin{pmatrix} \downarrow \\ \downarrow \\ 2 \end{pmatrix} \xrightarrow{C_4H_{9}-n} $	(99) 1
	C. Rea	ctions of Propargylic Substrates		
C3				
(CH ₃) ₃ SiC≡CCH ₂ OS(O)CH ₃	n-C₄H₄MgX (1 eq I)	THF, -60 to 20°, 1.5 h	$(CH_3)_3Si$ $n - C_4H_2$ $C = CH_2$	(88)
	C _o H ₁₁ MgX (1 eq I)	THF, -60 to 20°, 1.5 h	(CH ₃) ₃ Si C ₆ H ₁₁ C=CH ₂	(90)
	t-C,H,MgX (1 eq I)	THF, -60 to 20°, 1.5 h	$(CH_3)_3Si = C = CH_2 + t - C_4H_5$ $(CH_3)_3SiC = CCH_2C_4H_5 - t$	(30) (70)
	C ₅ H ₃ MgX (1 eq I)	THF, -60 to 20°, 1.5 h	$(CH_3)_3Si$ C_6H_5 C_6H_5 $(CH_3)_5SiC = CCH_4C_4H_5$	(40) (60)
(CH ₃) ₃ SiC=CCH ₂ OS(O)CH ₃	C _e H ₃ MgX (1 eq I)	THF, -60 to 20°, 1.5 h	$(CH_3)_3Si$ $C=CH_2 + C_6H_5$ $(CH_3)_3SiC=CCH_2C_6H_5$	(85) (15)
(CH ₃) ₃ SiC≡CCH ₂ OTs	t-C,H,MgX (1 eq 1)	THF, -60 to 20°, 1.5 h	$(CH_3)_3Si = C = CH_2 + t - C_4H_3$ $(CH_3)_3SiC = CCH_2C_4H_0 - t$	(85) (15)
(C ₆ H ₅) ₃ SnC≡CCH ₂ Cl	C ₂ H ₃ MgBr (1 eq I)	THF, -60°, 1 h	$C_2H_5 = C = CH_2$ $(C_6H_5)_3Sn$	(90)
C,				
CH ₃ (O)SOCH ₂ C = CCH ₂ OS(O)CH ₃	n-C₄H₂MgCl (2 eq) (2 eq I)	THF, -50 to 20°, 30 min	$CH_2 CH_2$ $n - C_4H_9 C_4H_9 - n$	(90)
	r-C,H₅MgCl (2 eq) (2 eq I)	THF, -50 to 20°, 30 min	CH ₂ t-C ₄ H ₉ C ₄ H ₉ -t	(90)
₽-CH3C6H4SO3CH2C≡CCH2OTs	C ₆ H ₃ MgBr (2 eq) (2 eq C)	THF, 25°, 30 min	CH ₂ C ₆ H ₅ C ₆ H ₅	(95)

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)	1.1	Refs.
CH ₃ CH(OSO ₂ C ₆ H ₄ CH ₃ -4)- C=CSi(CH ₃) ₃	(CH ₃) ₃ SiCH ₂ MgCl (1 eq I)	THF, 0°, 30 min	CH ₃ CH=C=C(Si(CH ₃) ₃)- CH ₂ Si(CH ₃) ₃	(70)	703
CH₃(O)SO C≡C O-(OC₂H	C₂H₃MgBr H₅ (1 eq I)	THF, -50 to 20°, then TsOH/CH ₃ OH, heat		(60)	18
	t-C,H,MgCl (1 eq I)	THF, -50 to 20°, then TsOH/CH ₃ OH, heat	HO r-C4H ₂ C=CH ₂	(73)	18
	C₅H₃MgBr (1 eq I)	THF, -50 to 20°	C ₂ H ₅ O C ₆ H ₅ =C=CH ₂ +	()	18
			C_2H_5O (65:35) (65:4)		
(C ₆ H ₅) ₃ SnC≡C− Cl	t-C₄H₂MgCl (1 eq I)	THF, -60°, 1 h	(C ₆ H ₅) ₃ Sn	(>90)	70
HC≡C OCH₂OH	n-C₄H₅MgBr (0.5 eq D)	Ether, -60°, 1.5 h	HO OH $hO OH$ $syn:anti 1:99$	(68)	70:
	MgBr	THE DWS (10.1)		(54)	12
HC≡C	(0.5 eq D)	-50°, 1 h	✓ =C=CHCH ₂ CO ₂ H	(34)	13
TMSC ECC(CH3)2OS(O)CH3	n-C3H3MgX (1 eq I)	THF, -60 to 20°, 1.5 h		(95)	18
	s-C ₄ H ₂ MgX (1 eq I)	THF, -60 to 20°, 1.5 h		(94)	18
	r-C.H.MgX (1 eq I)	THF, -60 to 20°, 1.5 h		(95)	18
	C₅H₃MgX (1 eq I)	THF, -60 to 20°, 1.5 h		(91)	18
C,					
CECCH2OTs	n-C _s H ₁₁ MgBr (1 eq C)	THF, 25 °, 2 h	n-C ₅ H ₁₁ C CH ₂	(76)	18
-CECCH ₂ OTs	n-C ₅ H ₁₁ MgBr (1 eq C)	THF, 25°, 2 h	n-C ₅ H ₁₁ C CH ₂	(78)	18
THPOCH ₂ C≡C	C ₂ H ₃ MgBr (1 eq C)	THF, -30°, then dil. acid		(63)	189
$HC \equiv CC \equiv C - \langle OS(O)CH_3 \rangle$	t-C ₄ H ₂ MgCl (1 eq I)	THF, -25°, 1 h	$HC \equiv C$ $C = CHCH_3$	(60)	184

TARI E II	SUBSTITUTION AND CONJUGATE ADDITIONS OF STOICHIOMETRIC CUILD-RMOX REAGENTS (Continued)
INDEL II.	Substitution And Consudering in Stotemonie file Co(i) funger resources (Communes)

HC≡CC≣C					
OS(O)CH3	C ₂ H ₅ MgBr (1 eq I)	THF, 0°, 1 h	$rac{HC \equiv C}{C_2H_5} = C = \langle$	(56)	184
	i-C3H7MgCl (1 eq I)	THF, -25°, 1 h	$\stackrel{HC\equivC}{\underset{i-C_3H_7}{\longrightarrow}}=C=\checkmark$	(25)	184
	t-C.H.MgCl (1 eq I)	THF, −25°, 1 h	HC≡C r-C₄H₂=C=	(15)	18
(CH ₃) ₃ SiC≡CC≡C	t-C.H.MgCl (1 eq I)	THF, -25°, 1 h	$(CH_3)_3SiC\equiv C$	(90)	18
(CH ₃) ₃ SiC≡C→C ₄ H ₉ - <i>t</i> OS(O)CH ₃	n-C,H,MgX (1 eq I)	THF, -60 to 20°, 1.5 h	$(CH_3)_3Si = C = CHC_4H_9 - t$	(91)	18
	t-C,HoMgCl (1 eq I)	THF, -60 to 20°, 1.5 h	$CH_3)_3Si = C = CHC_4H_9 - t + t - C_4H_9$	(40)	183
			$(CH_3)_3SiC\equiv C - \begin{pmatrix} C_4H_9-t \\ 0H \end{pmatrix}$	(60)	
(CH ₃) ₃ SiC≡C	r-C,H₃MgX (1 eq I)	THF, -60 to 20°, 1.5 h	(CH ₃) ₃ Si r-C ₄ H ₉ C=CHC ₄ H ₉ -r	(98)	183
C ₂ H ₅ OS(O)CH ₃ C ₂ H ₅ O OC ₂ H ₅ O	C₂H₅MgBr (1 eq C)	THF, -30, then dil. acid		(76)	18
$\begin{array}{c} H \\ i \cdot C_{2}H_{7} \\ E: Z 10:90 \end{array} \subset \equiv CH$	i-C₁H₁MgCl (1 eq I)	THF, -50 to 0°	$H = C = C = C_{3H_7}$ $i - C_{3H_7}$ H E: Z 85:15	(90)	19
$\begin{array}{c} H \\ i - C_{3}H_{7} \\ E:Z 10:90 \\ \end{array}$	t-CrH₂MgCl (1 eq I)	THF, -50 to 0°	H = C = C = D $E:Z 85:15$	(88)	19
	C₂H₃MgBr (4 cq C)	THF		(60)	704
	CH ₃ MgCl (4 eq C)	THF, 20°, 2 h	он	(60)	707
	C2H3MgBr (4 eq C)	THF, 20°, 2 h	= −он	(50)	707

TABLE II. SUBSTITUTION AND CONJUGATE ADDITIONS OF STOICHIOMETRIC CU(I)-RMgX REAGENTS (Continued)
Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
H n-C ₄ H ₉ ⁻¹ Br F: 7 18:82	t-C₄H₄MgCl (1 eq I)	THF, -50 to 0°	H = C = C = C = H	(95)	190
H $t - C_4 H_5 T$ Br E: Z 7:93	t-C₄H₂MgCl (1 eq I)	THF, -50 to 0°	H = C = C = C = D $E:Z 97:3$	(95)	190
$H C \equiv CH$ t-C ₄ H ³ Br E:Z 7:93	i-C₃H,MgCl (1 eq I)	THF, -50 to 0°	H = C = C = C = H H $E: Z 90:10$	(85)	190
CH ₃ (O)SO TMSCΞC	CH ₃ MgX (1 eq I)	THF, -60 to 20°, 1.5 h	TMS = c=	(91)	183
	C₅H₅MgX (1 eq I)	THF, -60 to 20°, 1.5 h		(97)	183
	C_2H_3MgBr $I_7 -n \qquad (1 eq I)$	THF, -50 to 20°, then TsOH, CH ₃ OH, heat	$ \begin{array}{c} HO \\ \searrow \\ C_2H_5 \end{array} C = CHC_3H_{7} \cdot n $	(75)	188
(CH ₃) ₃ SiOCH ₂ C≡C	H ₃ C ₆ H ₃ MgBr (1 eq I)	THF, -50 to 20°, then NaOH, CH ₃ OH	HO C ₆ H ₃ C	(90)	188
	CH ₃ MgCl (1 eq I)	THF, -50 to 20°, then NaOH, CH ₃ OH		(70)	188
HCECCEC	t-C₄H₃MgCl (1 eq I)	THF, -25°, 1 h	HC=C -C=CHC ₃ H ₇ - <i>i</i>	(50)	184
ch₃c≡cc≡c-∕ ^{OS(O)Ch}	t-C ₄ H ₂ MgCl (1 eq I)	THF, -25°, 1 h	CH₃C≡C r-C₄H₅⊂⊂	(90)	184
OCH ₃	C₂H₃MgBr (1.3 eq C)	THF, -50 to 25°, 1 h	$CH_{3}O$ $C_{2}H_{5}$	(85)	134
OH CEC OTs	C ₂ H ₅ MgBr (excess) (1.3 eq C)	THF, -50 to 25°, 1 h	OH C2H5	(62)	134
	<i>n</i> -C ₅ H ₁₁ MgBr (4 eq) (1.3 eq C)	THF, -50 to 25°, 1 h	OH C ₅ H ₁₁ -n	(74)	134
∽_c≡c-√°	n-C.H.MgBr (1 eq I)	THF, -60 to 0°, 15 min		(95)	708
n-C ₄ H ₉ C=C C ₂ H ₅ O OC ₂ H ₅	C ₂ H ₅ MgBr (1 eq C)	THF, - 30°, then dil. acid	$C_2H_5 = C$	(68)	189
	(1 eq C)	THF, -30° , then dil. acid		(37)	189

TABLE II. SUBSTITUTION AND CONJUGATE ADDITIONS OF STOICHIOMETRIC CU(I)-RMgX REAGENTS (Continued)

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)		Refs
	(1 eq C)	THF, -30°, then dil. acid		(70)	18
CH ₃) ₃ SiC=CC=C-C ₄ H ₅ -t	t-C ₄ H ₂ MgCl (1 eq I)	THF, -25°, 1 h, then NaOH, CH3OH	HC=C r-C ₄ H ₉ -t	(80)	18
C ^{zC^oots}	CH₃MgCl (3 eq C)	THF, 25°, 2 h	C=CH2	(80)	18
	<i>n</i> -C ₅ H ₁₁ MgBr (4 eq) (1.3 eq C)	THF, -50 to 25°, 1 h	HO CHUR	(74)	13
CEC OTs	C₂H₃MgBr (4 eq) (1 eq C)	THF, -50 to 25, 1 h		(70)	13
C_{4} H $C \equiv CC_{6}H_{5}$ Br $E: Z 9:91$	r-C₄H₂MgCl (1 eq I)	THF, -50 to 0°	$H = C = C = C = C_{6}^{1} C_{4} H_{9} - t$ t - C ₄ H ₅ E:Z 10:90	(95)	19
C ₁₇ O ₂ CCH ₃ (CH ₂) ₄ III C	(— eq D)	THF, DMS, -78 to 20°	(CH ₂) ₅ C	(92)	70
CH30	H3 H CH3MgBr (1 eq I)	THF, 0°, 1 h	CH3 H	(>97)	15
	t-C₄H₂MgBr (1 eq I)	THF, -50°, 1 h	r-C₄H₂ H C	(>97)	19
	і з Н		H CH3	(00)	

TABLE II. SUBSTITUTION AND CONJUGATE ADDITIONS OF STOICHIOMETRIC CU(I)-RMgX REAGENTS (Continued)

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)	-	Refs.
C ₂₃	СС ₆ H ₅		Xab		
X CEC	CH ₃ MgBr (1 eq D · LiBr)	THF, 0°, 1 h		OTBDMS	
ОТ	BDMS		\bigcirc	(76)	71
		D. Other Substitution Reactions			
CpRe(NO)(CO)Cl	l C ₆ H₃MgBr	THF, 25°, 1 h	CpRe(NO)(CO)C ₆ H ₅	(91)	71
	(excess D) p-CH ₃ C ₆ H ₄ MgBr	THF, 25°, 1 h	CpRe(NO)(CO)C ₆ H ₄ CH ₃ -p	(90)	71
	(excess D) p-CF ₃ C ₆ H ₄ MgBr	THF, 25°, 1 h	CpRe(NO)(CO)C ₆ H ₄ CH ₃ -p	(92)	71
CpFe(CO) ₂ Br	(excess D) C ₆ H₅MgBr (1 eq B)		CpFe(CO) ₂ C ₆ H ₅	(55)	712
a, a			H C2H5		
	C ₂ H ₃ MgCl (0.5 eq[Cul·P(C ₄ H ₅ -n) ₃])	1. THF, −30 to 25°, 16 h 2. <i>i</i> -C ₃ H ₇ OH		(60)	713
u u			s-C4H9		
	s-C4H3MgCl (0.5 eq[Cul·P(C4H9-n)3])	1. THF, -30 to 25°, 16 h 2. Br		(65)	713
SO ₂	<i>n-</i> C ₄ H ₉	Ether, -40°	<i>п</i> -C₄H ₉ ,	(100)	714
6	<i>n</i> -C ₇ H ₁₅ MgBr (1 eq C)	2010	<i>n</i> -C ₇ H ₁₅ SO ₂ H	(100)	
	2H5 CH Mat			(0.0)	
(C ₂ H ₅ O) ₂ CHCH O ₂ C	$CH_3 MgI$ $CCH_3 (0.5 eq D)$		(C ₂ H ₅ O) ₂ CHCH(CH ₃)OC ₂ H ₅	(85)	715
(C2H5O)2CHCH	²⁴⁵ CH ₃ MgI CCH ₃ (0.5 eq D)	Ether, 25°	(C ₂ H ₅ O) ₂ CHCH(CH ₃)OC ₂ H ₅	(85)	716
n-C4H9O2C	C _s H _s MgBr (0.5 eq D)	CH ₃ CN, HMPA, PdCl ₂ , LiCl, K ₂ CO ₃ , 0°, 20 h	n-C4H9O2CC6H5	(100)*	717
∇ ^{CO₂C₂H₅}		-	OH CO2C2H5	(71)	718
8	n-C ₇ H ₁₅ MgBr	Ether, THF, -60°, 1 min	OH SON CH	(83)	719
CH ₃ CH(CN)OSO ₂ C	(1.5 eq D) H ₃ C ₄ H ₃ MgBr	THF, 25°, 4 h	n-C ₈ H ₁₇ CH ₃ CH(CN)C ₄ H ₅	(40)	720
	(1 eq C) 1- $C_{10}H_7MgCl$ (1 eq C)	THF, 25°, 4 h	CH ₃ CH(CN)C ₁₀ H ₇ -1	(37)	720
		THF, 25°, 4 h	CH3CH(CN)	(56)	720
	(1 eq C) p-C ₆ H ₅ OC ₆ H ₄ MgCl (1 eq C)	THF, 25°, 4 h	ĊH₃CH(CN)C。H₄OC。H₅-p	(42)	720

TABLE II. SUBSTITUTION AND CONJUGATE ADDITIONS OF STOICHIOMETRIC CU(I)-RMgX REAGENTS (Continued)

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
C, OP(O)(OC	n-C ₉ H ₁₇ MgBr C ₂ H ₅) ₂ (0.5 eq E)	THF	C ₈ H ₁₇ - <i>n</i> n-C ₈ H ₁₇ CH ₂ CH=C=CH ₂	(6) (21)	645
N + CI- CO ₂ C ₂ H ₅	C ₆ H ₅ (1 eq D) (1 eq BF ₃)	THF, 25°, 3 h	C ₆ H ₅	(81)	721
CO2C	2H5 CH3MgX (0.5 eq CuX)	-	OH CO2C2H5	(82)	722
C2H3CH=C=0	CHBr C ₆ H ₅ MgBr (1 eq I)	THF, -70 to 25°, 30 min	H C ₆ H₅CH(C ₂ H₅)C≡CH	(79)	723
C N ^{Br}	$\begin{bmatrix} t-C_{4}H_{9}MgCl\\ (0.5 eq G) \end{bmatrix} (4 eq)$	THF, -78 to 25°, 30 min	$C_{d}H_{g}-t$	(52)	724
г₄ л-С₄Н₀СΞССІ	n-C₄H₅MgBr (1 eq D)	THF, ether, -40° , 2 h	п-С₄Н9С≡СС₄Н9-п	(72)	159
	(C ₆ H ₅ CH ₂) ₂ CuMgCl	– 78 to 0°	C ₆ H ₅ (CH ₂) ₂ 0 0	(73)	725
C ₇ Br	[<i>n</i> -C₄H₄MgCl (0.5 eq B)] (2 eq)	THF, -80°	C4H9-7	(95)	726
	CIMg(CH ₂),MgCl (1 eq E, 1 eq n-C ₃ H ₁₁ C=CLi)	THF, -90 to 20°, 12 h	\bigcirc	(40)	726
C ₅ C ₆ H ₅ H Br	(4 eq D)	Ether, -30°, 18 h		(45)	727
Lot BF	<i>p</i> -CH ₃ C ₆ H ₄ MgBr - (0.5 сq C)	THF, -78 to 25°	+ CHCH.	(80)	728
THPO	MgBr I (0.5 eq D)	THF, HMPA, -23°	THPO	(83)	729
$\frac{1}{2}$	CH ₃ O CH ₃ O CI (1 eq E)	THF, -78 to 20°, 2 h	TMS_C=C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(31)	730

TABLE II.	SUBSTITUTION AND CONJUGATE ADDITIONS OF STOICHIOMETRIC CU(I)-RMgX REAGENTS (Continued

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
C_{10} OS(O) ₂ CF ₃ C_4H_9-t	MgBr (0.5 eq C)	THF, –15°, 12 h		(68)	286
C ₁₃	(0.5 eq C)	THF, -30°	OH 0 n-C ₁₀ H ₂₁	(86)	613
	[CH ₃ MgBr (0.5 eq C)] (4 eq)	THF, -78 to 25°, 18 h		(75)	724
	E	Conjugate Addition Reactions			
C3 HC=CCO2C2H5	r-C₄H₄MgCl	Ether, -78°, 2 h	1-C4H9 CO2C2H5	(70)	249
	(1 eq CH ₃ Cu) i-C ₃ H ₇ MgCl (1 eq CH Cu)	Ether, -78°, 2 h	i-C3H7 CO2C2H5	(69)	249
CH2=CHO	n-C ₄ H ₂ MgCl (0.5 eq E)	THF, (CH ₃) ₃ SiCl, (C ₂ H ₅) ₃ N, -90°, 1 h	n-C ₅ H ₁₁	(84)	240
(C ₆ H ₅) ₃ CO- C ₆ H ₅ (CH ₃) ₂ Si	$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	Ether, THF, DMS, -55°	$C_{6}H_{5}(CH_{3})_{2}Si$ $C_{6}H_{5}O$ 92% de	(92)	73
С, СН₃02СС≡ССО2СН₃	n-C _s H ₁₃ MgBr (1 eq E)	THF, -78°, 40 min	^{<i>n</i>-C₆H₁₃ CH₃O₂C CO₂CH₃}	(86)	235
	MgBr (1 cq E)	THF, -78°, 40 min	CH ₃ O ₂ C CO ₂ CH ₃	(71)	235
	MgBr (1 eq E)	THF, -78°, 40 min	CH ₃ O ₂ C CO ₂ CH ₃	(71)	235
	C₄H₄MgBr (1 eq D)	THF, -78°, 40 min	CH3O2C CO2CH3	(85)	235
	(CH ₃) ₃ SiCH ₂ MgCl (1 eq D)	THF, -78°, 40 min	CH ₃ O ₂ C CO ₂ CH ₃	(97)	235

TABLE II. SUBSTITUTION AND CONJUGATE ADDITIONS OF STOICHIOMETRIC CU(I)-RMgX REAGENTS (Continued)

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)		Refs
CO2CH3	CH ₃ Mgl	Ether, -10°, 2.5 h	i-C,H,CO2CH3	(25)	233
	(1.5 eq D) CH ₃ MgBr (1 eq C ₆ H ₃ SCu)	Ether, -70 to -10° , 2.5 h	i-C ₄ H ₉ CO ₂ CH ₃	(33)	241
	C ₆ H ₅ MgBr (0.5 eq D)	Ether, -10°, 2.5 h	C ₆ H ₅ CHCH ₂ CO ₂ CH ₃ CH ₃	(70)	233
	C,H,MgCl (1 eq o-CH,OC,H,SCu)	Ether, -40°, 2 h	C ₆ H ₅ CHCH ₂ CO ₂ CH ₃ CH ₃	(100)	24
	C2H3MgBr (1 eq C3H3SCu)	Ether, -70°C to -40°, 2 h	CHCH ₂ CO ₂ CH ₃ CHCH ₂ CO ₂ CH ₃	(41)	241
	C ₂ H ₃ MgBr (1 eq o-CH ₃ OC ₆ H ₄ SCu)	Ether, -70°C to -40°, 2 h	CHCH ₂ CO ₂ CH ₃ CH ₃	(94)	241
CH₃O₂CC≡CCO₂CH₃	MgBr (1 eq I)	THF, -50 to 0°, 2 h	CO ₂ CH ₃	(75)	732
C,					
(CH ₃) ₂ C=CHCOCH ₃	C,H₃MgBr (0.5 eq D)	Ether, -10°, 2.5 h	(CH ₃) ₂ C(C ₆ H ₅)CH ₂ COCH ₃	(45–70)	233
	(1 eq CH ₃ Cu)		CH2COCH3	(79)(11) [;]	240
C.			OSi(CH ₂)		
	(CHa)-Si				
<u>گ</u>	MgBr (0.5 eq D)	THF, -70°, 30 min, then (CH ₃) ₃ SiCl, (C ₂ H ₅) ₃ N, HMPA	Si(CH ₃) ₃	(78)	23
	MgBr (0.5 eq D)	THF, -40°, 45 min, then (CH ₃) ₃ SiCl, (C ₂ H ₅) ₃ N, HMPA		(89)	25
	MgBr (0.5 eq D)	THF, -30°, 45 min, then BrCH ₂ CO ₂ C ₂ H ₅ , HMPA	$CO_2C_2H_5$ 24:76 cis: trans	(81)	25
	CH ₃ O <i>n</i> -C ₃ H ₇ C≡CCu	THF, 25°, 3 h, then ICH ₂ CO ₂ C ₂ H ₅ , HMPA	C2H3O2C	(>95)	24
TROMSO	C ₂ H ₅ O (1 eq G)	THF, -78 to 0°, 1 h	TROMSO	C ₂ H ₅ (86)	73.

TABLE II. SUBSTITUTION AND CONJUGATE ADDITIONS OF STOICHIOMETRIC CU(I)-RMgX REAGENTS (Continued)

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
^{C₂H₅} ∕──∕	n-C,H₂MgCl (0.5 eq E)	THF, TMSCl, (C ₂ H ₅) ₃ N, 90°, 1 h	C ₂ H ₅ n-C ₄ H ₉ OTMS (80)(4) ⁱ	240
	CeHeMgCl (0.5 eq E)		C_2H_5 (60)(12) C_6H_5	240
n-C3H7CHO	i-C₃H₂MgCl (0.5 eq E)		$n-C_{3}H_{7} \xrightarrow{\qquad} OTMS \\ C_{3}H_{7}-i $ (72)	240
	t-C.H.MgCl (0.5 eq E)	**	$n-C_3H_7 \longrightarrow OTMS (23)(21)^i$ C_4H_9-i	240
	(0.5 eq E)	"	n-C ₃ H ₇ —OTMS (58)	240
CO2CH3 CECCO2CH3	O-C-MgBr (1 eq D)	THF, -78 to 25°, 5 h	(42)	236
	(1 eq D)	THF, -78 to 25°, 5 h	CO ₂ CH ₃ (40)	236
CO2CH3 CECCO2CH3	(1 eq D)	THF, -78 to 25°, 5 h	(48)	236
)3 CeHnMgCl (0.5 eq E)	 1. THF, DMS, -23°, 1.5 h 2. HCl, CH₃OH 3. KOH 	$R-C_4H_9$ CO_2H (76) C_6H_{11} H (S-) 97% ee	734
n-C4H9 CHO	$(CH_3)_3SiO \longrightarrow MgBr$ $C_6H_5(C_2H_5)CH$ $[(CH_3)_3SiC = CCu]$	Ether, THF, -20°, 2-12 h	(CH ₃) ₃ SiO C ₆ H ₅ (C ₂ H ₅)CH (49) C ₆ H ₉ -n	735
Å	$(CH_3)_3SiO \longrightarrow MgBr$ $C_6H_5(C_2H_5)CH$ $[(CH_3)_3SiC \equiv CCu]$	Ether, THF, -20°, 2-12 h	$OSi(CH_3)_3 (74)$ $CH(C_2H_5)C_6H_5$	735

TABLE II. SUBSTITUTION AND CONJUGATE ADDITIONS OF STOICHIOMETRIC CU(I)-RMgX REAGENTS (Continued)

MgBr	(76)(6) [,]	246
C ₂ H ₅ O V MgBr THF		
$(1 \text{ eq } CH_3Cu)$	(56)(18) ^j	246
$i-C_{2}H_{11}MgX \qquad \text{Ether, } -30^{\circ}, 1 \text{ h}$ $[0.25 \text{ eq}(\text{COD}\cdot\text{CuBr})_{2}]$	(65)	251
$\begin{array}{c} CH_3 \\ MgX \\ [0.25 eq(COD \cdot CuBr)_2] \end{array}$ Ether, -30° , 1 h	(58)	251
$\begin{bmatrix} 0 \\ 0 \\ MgX \\ [0.25 eq(COD \cdot CuBr)_2] \end{bmatrix}$ Ether, -30°, 1 h	(86)	251
C_{s} $C_{2}H_{5}O_{1}O_{2}MgBr$ THF $(1 eq CH_{5}Cu)$ THF $C_{2}H_{5}O_{1}O_{2}MgBr$ THF	(60)*(16) [,]	246
(1 eq CH ₃ Cu) THF	(80)*(3) [,]	246
$ \begin{array}{ccc} & & & \\ &$	(74)	736
$C_{2H_{5}O_{2}C} \xrightarrow{OTBDMS} (1 eq D) \xrightarrow{OTBDMS} C_{2H_{5}O_{2}C} \xrightarrow{OTBDMS} (1 eq D)$	()	737
C, C ₆ H ₅ C ₆ H ₅ C ₆ H ₅ MgBr Ether, -10°, 2.5 h (C ₆ H ₅) ₂ CHCH ₂ COC ₆ H ₅	(66)	233
CUC ₆ H ₅ (0.5 eq D) CH ₅ CH ₃ MeI Ether, -10° , 2.5 h C ₆ H ₅ CH(CH ₃)CH ₂ CO ₂ CH ₃	(46-58)	233
CO ₂ CH ₃ (0.5 eq D) t-C ₄ H ₉ MgBr THF, -10°, 1.5 h t-C ₄ H ₉ CH(C ₆ H ₅)CH ₂ CO ₂ CH ₃ (1 eq C ₆ H ₅ SCu)	(87)	241
MgBr (1 eq C ₆ H ₅ SCu) Ether, -40° , 2.5 h CH(C ₆ H ₅)CH ₂ CO ₂ CH ₃	(90)	24

TABLE II. SUBSTITUTION AND CONJUGATE ADDITIONS OF STOICHIOMETRIC CU(I)-RMgX REAGENTS (Continued)

Substrate	RMgX (mole % CuX)	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C₅H₅C≡CCO₂C₂H₅	i-C3H7MgCl (1 eq CH3Cu)	Ether, -10°	<i>i</i> -C ₃ H ₇ C ₆ H ₅ CO ₂ C ₂ H ₅ (65)	249
	t-C,H,MgCl (1 eq CH,Cu)	Ether, -10°	$\begin{array}{c} \begin{array}{c} \begin{array}{c} c_{4}H_{9} \\ \hline \\ C_{6}H_{5} \\ \hline \\ O \\ \end{array} \end{array} \qquad (47)(25)$	249
Å	MgX [0.25 eq(COD-CuBr) ₂] ⁴	Ether, -30°, 1 h	(60)	251
CO ₂ C ₂ H ₅	MgBr (0.5 eq D)	THF, -78 to -40°, 1.5 h		237
CO ₂ C ₂ H ₅	(0.5 eq D)	THF, -78 to -40°, 1.5 h	$ \begin{array}{c} $	237
	MgBr (0.5 eq B)	 Ether, −75°, 15 min CH₃CH=CHCHO, ZnCl₂) 738
	CH ₃ C≡C→√ ^{MgBr} (1 eq D)	THF, BF3'Et2O - 78 to 25°, 4 h	$\begin{array}{c} O \\ O \\ O \\ H \\ CH_3 C \equiv C(CH_2)_2 \end{array} OTBDMS $ (55)) 739
	(0.5 eq CuX)	1. Ether, -50° 2. HCHO	(65) OH	740

TABLE II. SUBSTITUTION AND CONJUGATE ADDITIONS OF STOICHIOMETRIC CU(I)-RMgX REAGENTS (Continued)

" The Grignard reagent was added immediately after mixing CuBr with the substrate.

^b The Grignard reagent was added after stirring the CuBr with the substrates for 6 h.

' The substrate was the E isomer.

" The substrate was the Z isomer.

- ' There was also <2-5% of the S_N2 products.
- ¹ There was also 15% of the $S_N 2$ product.
- ⁵ The yield was based on PdCl₂.
- * The stereochemistry was not assigned.
- 'The values in parentheses are the percent of 1,2-addition product formed.

¹ The values in parentheses are the percent of methyl transfer product formed.

	Cu(I)/KMgA REAGENTS				Cu(I)/RM
Acetylene Derivative	RMgX (Eq. of CuX)	Carbometallation Conditions	Adduct	Electrophile	Substitution Reaction Condition
1.00					
HC≡CH	C_2H_5MgBr (1 eq C)	THF, -50 to -20°, 15 min	C ₂ H ₅ C _u · MgBr ₂	(C ₆ H ₅) ₂ PCl	THF, -40°, 1.5 h
	C ₂ H ₅ MgBr (1 cq C)	THF, -50 to -20°, 15 min	C ₂ H ₅ Cu · MgBr ₂	(C ₆ H ₅) ₃ SnCl	THF, -40°, 1.5 h
	C ₂ H ₅ MgBr (1 eq C)	Ether, -50 to -15°	C ₂ H ₅ _Cu · MgBr ₂	n -C3H11C≡CBr	Ether, THF (1:1), TMEDA, -15°, 1 h
	C ₂ H ₃ MgBr (1 eq C)	Éther, -50 to -15°	C ₂ H ₅ Cu · MgBr ₂	(CH ₃) ₃ SiOC≡CBr	Ether, THF (1:1), TMEDA, -15°, 1 h
	i-C ₃ H ₇ MgCl (1 eq C)	THF, -50 to -20° 15 min	i-C ₃ H ₇ _Cu·MgBrCl	O ₂	THF
	n-C ₄ H ₉ MgBr (1 eq C)	Ether, -15°, 1.5 h	n-C4H9Cu · MgBr2	I2	Ether, -30°
	n-C4H9MgBr (1 eq C)	Ether, -15°, 1.5 h	n-C4H9Cu · MgBr2	<i>▶</i> ^{Br}	Ether, HMPT, P(OC ₂ H ₅) ₃ , -10 1.5 h
(excess)	n-C ₄ H ₉ MgBr (0.5 eq D)	THF, DMS (20:1), -78 to -30°, 1 h	n-C4H9 2CuMgX	L.°	THF, DMS (20:1) - 30°, 3 h
	I-C₄H₃MgCl (1 eq C)	THF, -50°, 10 min	n-C4H9Cu · MgBrCl	1. CS ₂ 2. CH ₃ I	1. THF, -50°, 30 m 2. THF, -50 to 0°
	1-C4H9MgCl (1 eq C)	THF, −50 to −20°, 15 min	1-C4H9Cu · MgBrCl	CH ₃ SSO ₂ CH ₃	THF, -40°, 10 mi
	1-C4H9MgCl (1 eq C)	THF, -50 to -20°, 15 min	r-C4H9_Cu · MgBrCl	NH ₄ Cl/H ₂ O	-
	1-C4H9MgCl (1 eq C)	THF, -50 to -20°, 15 min	r-C4H9Cu · MgBrCl	CICN	THF, -50 to -20°
	t-C₄H9MgCl (1 eq C)	THF, -50 to -20°, 15 min	r-C4H9Cu · MgBrCl	C ₆ H ₅ S(O) ₂ CN	THF, -50 to -20
	t-C₄H9MgBr (1 eq C)	THF, -50 to -20°, 15 min	r-C4H9Cu · MgBr2	I ₂	THF, HMPT, -50 20°, 15 min
	<i>t</i> -C₄H₂MgCl (0.5 eq C)	THF, -50 to -20°, 15 min	r-C4H9_Cu · MgX	CICN (2 cq)	THF, -50 to -20
	n-C _s H ₁₁ MgBr	Ether, DMS (1:1),	n-C3H11		THF, ether, DMS,
	(0.5 eq D)	–23°, 2 h	n-C5H11_Cu · MgX	~~~~	-30°, 3 h
	n-C ₆ H ₁₃ MgBr (1 eq C)	THF, -50 to -20°, 15 min	n-C6H13Cu · MgBr2	NH ₄ Cl/H ₂ O	
	$n-C_6H_{13}MgBr$ (1 eq C)	Ether, DMS (1:1), -25°, 4 h	n-C6H13Cu · MgBr2	NCS	Ether, DMS, THF. -25°, 1 h
	<i>n</i> -C ₆ H ₁₃ MgBr (1 eq C)	Ether, DMS (1:1), -25°, 4 h	M-C6H13Cu · MgBr2	NBS	Ether, DMS, THF -25°, 1 h
(excess)	n-C ₆ H ₁₃ MgBr (0.5 eq D)	THF, DMS (20:1), -78 to -30°, 1 h	n-C6H13	□Γ [°]	THF, DMS (20:1) -30°, 3 h
	C ₆ H ₁₁ MgBr (1 eq C)	THF, -50 to -30°	C6H11 Cu · MgBr2	BrCN	THF, HMPT, -50
Q.s. A	C ₆ H ₁₁ MgCl (1 eq C)	THF, -50 to -20°	C ₆ H ₁₁ Cu · MgBrCl	(C ₆ H ₅) ₃ SnCl	20° THF, -40°, 1.5 h
(excess)	n-C9H19MgBr (0.5 eq D)	THF, DMS (20:1), -78 to -30°, 1 h	n-C9H19_2CuMgX	r-f ^o	THF, DMS (20:1)

 \Box

TABLE III. CARBOCUPRATION REACTIONS OF STOICHIOMETRIC Cu(I)/RMgX REAGENTS

	Substitution Reaction Conditions	Product(s) and Yield(s) (%)		Rcfs.
	THF, -40°, 1.5 h	C2H5_P(C6H5)2	(—)°	209
	THF, -40°, 1.5 h	C2H5Sn(C6H5)3	(—)"	209
	Ether, THF (1:1), TMEDA, -15°,	C2H3_C=CC3H11-7	(60)	159
Br	Ether, THF (1:1), TMEDA, -15°, 1 h	C2H5 CEC(CH2)2OH	(60)	159
	THF	i-C3H7	(~95)	185
	Ether, -30°	n-C4H9	(64)	208
	Ether, HMPT, P(OC ₂ H ₅) ₃ , -10° , 1.5 h	n-C4H9	(50)	208
	THF, DMS (20:1), -30°, 3 h	n-C4H9CO2H	(90)	228
	1. THF, -50°, 30 min 2. THF, -50 to 0°	1-C4H9	(75)	142
	THF, -40°, 10 min	1-C4H9SCH3	(—)"	209
	-	r-C4H2CH=CH2	(>95)*	185
	THF, -50 to -20°	1-C4H9CN	(90)	227
	THF, -50 to -20°	1-C4H9CN	(92)	227
	THF, HMPT, -50 to	1-C4H9	(>90)	207
	THF, -50 to -20°	1-C4H9CN	(94)	227
	THF, ether, DMS, -30° , 3 h	n-C3H11	CO ₂ H ⁽⁸⁷⁾	117
	-	n-C ₆ H ₁₃ CH=CH ₂	(~90) ^b	185
	Ether, DMS. THF,	n-C6H13CI	(50)	206
	Ether, DMS, THF,	n -C6H13_Br	(52)	206
	-25°, 1 h THF, DMS (20:1), -30°, 3 h	л-С ₆ Н ₁₃ СО ₂ Н	(87)	228
	THF, HMPT, -50 to	C6H11 Br	(>90)	207
	THF, -40°, 1.5 h	C6H11Sn(C6H5)3	()"	209
	THF, DMS (20:1). - 30°, 3 h	n-C9H19CO2H	(81)	228

TABLE III. CARBOCUPRATION REACTIONS OF STOICHIOMETRIC

	(-)							
Acetylene Derivative	RMgX (Eq. of CuX)	Carbometallation Conditions	Adduct	Electrophile	Substitution Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
	(CH ₃) ₃ SiCH ₂ MgCl	Ether, 10°	(CH ₃) ₃ SiCu · MgBrCl	Li ₂ CuCl ₄	THF, 20°, 2 h	(CH3)3Si	(42)	222c
	(1 eq CuBr-Lil) (CH ₃) ₃ SiCH- (C ₃ H ₇ -n)MgCl (1 eq [CuBr-2 LiCl])	THF, -20°, 2 h	(CH3)3SiCH(C3H7-n)Cu · MgBrCl	l ₂	THF, 10°, 1 h	(CH ₃) ₃ SiCH(C ₃ H ₇ -n)I	(38)	222c
	(CH ₃) ₃ SiCH- (C ₃ H ₁₁ - <i>n</i>)MgCl (3 eq [CuBr-2 LiCl])	THF, -30 to -20°, 2 h	(CH3)3SiCH(C3H11-n)Cu · MgBrCl	NH4CI/NH4OH	-	(CH ₃) ₃ SiCH(C ₃ H ₁₁ -n)	(56)	222b
(C₄H₃)₃SiCΞCH	C2H3MgX (CuY)	THF, -50°, 10 min	(C ₆ H ₅) ₅ Si "Cu" C ₂ H ₅	NBS or BrCN	THF, 20°	(C ₆ H ₅) ₃ Si	(—)"	203
	i-C3H7MgX ^c (CuY)	THF, -50°, 10 min	(C ₆ H ₅) ₃ Si "Cu" C ₃ H ₇ -i	СН3	THF, 20°	(C ₆ H ₅) ₃ Si	(—)"	203
	r-C ₄ H ₉ MgX ^c (CuY)	THF, -50°, 10 min	(C ₆ H ₅) ₃ Si	NCS	THF, 20°	(C ₆ H ₉) ₉ SI	(—) ^a	203
	C ₆ H ₁₁ MgX ^c (CuY)	THF, -50°, 10 min	(C ₆ H ₅) ₃ Si	NH4C/H2O	THF, 20°	(C ₆ H ₅) ₅ Si	(—) ^a	203
с₂н₅ос≡сн	n-C₄H9MgX' (CuY)	-	C2H50 n-C4H2 "Cu"	CH3COCI	THF, 3% Pd- [P(C ₆ H ₅) ₃]4	C2H5O	(74)	221
	(CH ₃) ₃ SiCH ₂ MgCl (1 eq C)	Ether, -40°, 3 h	(CH ₃) ₅ Si C ₂ H ₅ O Cu · MgBrCl	NH,CI/NH,OH	THF, 3% Pd- [P(C ₆ H ₅) ₃] ₄	(CH ₃) ₃ Si C ₂ H ₃ O CH ₂	(68)	222b
	(CH ₃) ₃ SiCH ₂ MgCl (1 cq C)	Ether, -40° , 3 h	(CH ₃) ₃ Si C ₂ H ₅ O Cu · MgBrCl	Li ₂ CuCl ₄	THF, -10°, 2 h	(CH ₃) ₃ Si C-H-0 C-H-0	(55)	222c
	(CH ₃) ₃ SiCH ₂ MgCl (1 eq C)	Ether, -40°, 3 h	(CH ₃) ₃ Si C ₂ H ₅ O Cu · MgBrCl	lz	THF, -10°, 1 h	(CH ₃) ₃ Si C ₂ H ₅ O	(54)	222c
	(CH ₃) ₃ SiCH ₂ MgCl (1 eq C)	Ether, -40°, 3 h	(CH ₃) ₃ Si C ₂ H ₅ O Cu · MgBrCl	<i>I</i> ^{Br}	THF, ether, Lil, 20°, 3 h	(CH ₃) ₃ Si C ₂ H ₅ O	(41)	222c
	(CH3)3SiCH2MgCl (1 eq C)	Ether, -40°, 3 h	(CH ₃) ₃ Si C ₂ H ₅ O Cu · MgBrCl	n-C4H9	THF, ether, 5% Pd[P(C ₆ H ₅) ₃] ₄ , 20°, 2 h	(CH ₃) ₃ Si С ₂ H ₅ O	(78)	222c
	(CH ₃) ₃ SiCH ₂ MgCl (1 eq C)	Ether, -40°, 3 h	(CH ₃) ₃ Si C ₂ H ₃ O Cu · MgBrCl	n-C6H13CO	THF, ether, 5% Pd[P(C ₆ H ₅) ₃] ₄ , 20°, 2 h	(CH ₃) ₃ SiCOC ₆ H ₁₃ -7	(65)	222c
	(CH ₃) ₃ SiCH ₂ MgCl (1 eq C)	Ether, -40°, 3 h	(CH ₃) ₃ SI C ₂ H ₅ O Cu · MgBrCl	СН3СОСІ	THF, 5% Pd [P(C ₆ H ₅) ₃] ₄ , -10°, 2 h	OSI(CH ₃) ₃	(59)	222c
	(CH ₃) ₃ SiCH ₂ MgCl (1 eq C)	Ether, -40°, 3 h	(CH ₃) ₃ Si C ₂ H ₅ O Cu · MgBrCl	∕~,coci	THF, 5% Pd[P(C6H3)3]4, - 10°, 2 h	OSI(CH ₃) ₃	(76)	222c
						-2-3-		

TABLE III. CARBOCUPRATION REACTIONS OF STOICHIOMETRIC Cu(I)/RMgX REAGENTS (Continued)

 TABLE III.
 CARBOCUPRATION REACTIONS OF STOICHIOMETRIC Cu(I)/RMgX REAGENTS (Continued)

Acetylene Derivative	RMgX (Eq. of CuX)	Carbometallation Conditions	Adduct	Electrophile	Substitution Reaction Conditions	Product(s) and Yield(s) (%)	
	(CH ₃) ₃ SiCH- (C ₃ H ₇ -n)MgCl (1 eq CuBr·Lil)	Ether, 10°, 18 h	(CH3)3SiCH(C3H7-n) C2H5O	СН3СОСІ	THF, 5% Pd[P(C₀H₅)₃]₄, −10°, 2 h	n-C3H7 OSI(CH3)3 C2H30	(48)
	(CH ₃) ₃ SiCH- (C ₃ H ₆ -n)MgCl (1 eq CuBrLil)	Ether, 10°, 18 h	(CH ₃) ₃ SiCH(C ₃ H ₇ -n) C ₃ H ₂ O	NH4CI/NH4OH	120	(CH ₃) ₃ SiCH(C ₃ H ₇ -n) C ₂ H ₅ O	(62)
	Si(CH ₃) ₃ MgBr (1 eq C)	THF, -20°, 2 h	$\overset{\text{Si}(CH_3)_3}{=} \underbrace{\overset{\text{Cu} \cdot MgBr_2}{-}}_{Cu+cO}$	NH₄CI/NH₄OH	÷	SI(CH ₃) ₃ C ₂ H ₃ O	(66)
^С ₃ СН₃С≡СН	C ₂ H ₃ MgBr (1 eq C)	Ether, -15°, 1.5 h		I ₂	Ether, -30°	C2H5	(76)
	C ₂ H ₃ MgBr (1 eq C)	THF, -50 to -20°, 15 min		CH ₃ SSO ₂ CH ₃	THF, -40°, 10 min	C2H5 SCH3	(—) ^a
	C ₂ H ₃ MgBr (1 eq C)	THF, −50 to −20°, 15 min		(C ₆ H ₅) ₃ SnCl	THF, -40°, 1.5 h	C2H3 Sn(C6H3)3	(—)°
	C ₂ H ₃ MgBr (1 eq C)	Ether, -15°, 1.5 h		n-C4H9I	Ether, HMPT, P(OC ₂ H ₃) ₃ , -10°,	C2H5 C4H3-n	(58)
	C ₂ H ₃ MgBr (1 eq C)	Ether, -15°, 1.5 h		₩ı	1.5 n Ether, HMPT, P(OC ₂ H ₅) ₃ , -10°, 1.5 h	C2H}	(73)
	C ₂ H ₃ MgBr (1 cq C)	Ether, -15°, 1.5 h		C ₆ H ₅ CH ₂ Br	Ether, HMPT. P(OC ₂ H ₅) ₃ , -10°, 1.5 h	C2H3 CH2C6H5	(85)
	C ₂ H ₅ MgBr (1 eq C)	Ether, -15°, 1.5 h		C ₂ H ₅ O ^{Br}	Ether, HMPT, P(OC ₂ H ₅) ₃ , -10°, 1.5 h		(83)
	C ₂ H ₅ MgBr (1 cq C)	Ether, -15°, 1.5 h		C ₂ H ₅ O ^{Br}	Ether, HMPT, P(OC ₂ H ₅) ₃ , -10°, 1.5 h	C ₂ H ₃ Br	(38)
	C ₂ H ₃ MgBr (1 cq C)	Ether, -15°, 1.5 h		Cl(CH ₂) ₃ I	Ether, HMPT, P(OC_2H_5) ₃ , -10°,	C2H3 (CH2)3CI	(48)
	C ₂ H ₅ MgBr (1 eq C)	Ether, -15°, 1.5 h		CH ₃ O ₂ C(CH ₂) ₃ I	Ether, HMPT, $P(OC_2H_5)_3, -10^\circ,$	C2H3 (CH2)3CO2CH3	(56)
	C₂H₃MgBr (1 eq C)	Ether, -15°, 1.5 h		C ₆ H ₅ C≡CCH ₂ Br	Ether, HMPT, P(OC_2H_5) ₃ , -10°,	C2H3 CECC6H3	(10)
	C ₂ H ₃ MgBr (1 eq C)	Ether, -50 to -15°		CH₃O₂CC≡CBr	Ether, THF, TMEDA, -15°,	C2H5 C=CCO2CH3	(78)
	C2H3MgBr (1 eq C)	Ether, -50 to -15°		(CH ₃) ₃ SiO(CH ₂) ₈ C≡CBr	Ether, THF, TMEDA, -15° , 1 h, then 2 N H ₂ SO ₄		$\begin{array}{l} 32) \ (n \ = \ 1) \\ 34) \ (n \ = \ 2) \end{array}$

TABLE III. CARBOCUPRATION REACTIONS OF STOICHIOMETRIC Cu(I)/RMgX REAGENTS (Continued)

 TABLE III.
 CARBOCUPRATION REACTIONS OF STOICHIOMETRIC Cu(I)/RMgX REAGENTS (Continued)

Refs.

222c

222b

222b

208

209

209

208

208

208

208

208

208

208

208

159

159

Acetylene	RMaX	Carbometallation		\
Derivative	(Eq. of CuX)	Conditions	Adduct	Electrophile
	C ₂ H ₅ MgBr (1 eq C)	Ether, -15°, 1 h		нс≡с
	<i>n</i> -C₃H₁MgBr (1 eq E)	Ether, DMS (1:1), -25°, 4 h		NBS
	i-C ₃ H ₇ MgX ^c (1 eq CuY)	-	,-C₂H₁	ŀ-C₄H9COCI
	i-C3H7MgX° (1 eq CuY)	7	1-C3H7 "Cu"	C2H3O2CCI
	i-C3H7MgX° (1 cq CuY)	-	1-C3H7	
	n-C4H9MgX (1 eq CuY)	-	"-C4H	Сосі
	n-C ₆ H ₁₃ MgCl (1 eq C)	THF, -15°, 30 min	n-C ₆ H ₁ 3 Cu · MgBrCl	NH4CI/H2O
	n-C ₆ H ₁₃ MgBr (1 eq E)	Ether, DMS (1:1), -23°, 2.2 h	n-C ₆ H ₁₃ Cu · MgBr ₂	\bigcirc
	(1 eq C)	Ether, - 15°, 1.5 h		CH3I
(CH ₃) ₃ SiCH ₂ C≡CH	<i>n</i> -C₄H₂MgBr (1 eq [CuBr- 1.5 Lil])	Ether, -10° , 10 h	(CH ₃) ₃ Si n -C ₄ H ₂ C _u · MgBr ₂	NH4CI/NH4OH
C2H3O2CC≡CH	(CH ₃) ₃ SiCH ₂ MgCl (1 eq C)	Ether, - 50°, 2 h	(CH ₃) ₃ Si- ₇ Cu · MgBrCl CO ₂ C ₂ H ₃	NH4CI/NH4OH
(C2H3O)2CHC≡CH	(CH ₃) ₃ SiCH ₂ MgCl (1 eq C)	THF, -10°, 6 h	(CH ₃) ₃ Si Cu · MgBrCl CH(OC ₂ H ₅) ₂	NH4CI/NH4OH
C,				
C₂H₃C≡CH	n-C3H7MgBr (1 eq E)	Ether, DMS (1:1), -25°, 4 h	С ₂ H ₅ л -С ₃ H ₇ Си · MgBr ₂	NCS
	n-C3H7MgBr (1 eq E)	Ether, DMS (1:1), -23°, 2 h	C ₂ H ₅ n -C ₃ H ₁ Cu · MgBr ₂	CH A

TABLE III.	CARBOCUPRATION REACTIONS OF STOICHIOMETRIC
	Cu(I)/RMgX REAGENTS (Continued)

ectrophile	Substitution Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
Å	Ether, -20°, 1 h	C₂H} → = c = <	(96)	127
	Ether, DMS, THF, -25°, 1 h		(72)	206
DCI	THF, 3% Pd[P(C ₆ H ₅) ₃] ₄		(84)	221
CI	THF, 3% Pd[P(C6H5)3]4	(-C,H	(56)	221
OOC2Hs	THF, 3% Pd[P(C6H5)3]4		(58)	221
ici U	THF, 3% Pd[P(C6H5)3]4		(85)	221
20	-)=сн ₂	(~90) ^b	185
	Ether, DMS (1:1), -23 to 0°, 14 h	n-C ₆ H ₁₅	(73)	218b
	Ether, HMPA, P(OC ₂ H ₅) ₃ , -10° ,		(68)	208
ł₄OH	_	(CH ₃) ₃ Si- CH ₂	(56)	222b
н₄он	-	n -C4H4 (CH3)3SI-72 CO2C2H3	(55)	222a,b
I₄OH	-	E: Z 75:25 (CH ₃) ₃ Si- CH(OC ₂ H ₃) ₂	(25)	222a,b
	Ether, DMS, THF, -25°, 1 h	C ₂ H ₅	(98)	206
2	Ether, DMS, HMPA, -33°, 24 h ⁴	$\begin{array}{c} C_2H_5 \\ C_2OH $	(75)	218b

	TABLE III. CARBOCU Cu(I)/RM	UPRATION REACTIONS OF ST gX REAGENTS (Continued)	OICHIOMETRIC	TA	BLE III. CARBOCUPRATION R Cu(I)/RMgX REAGE	REACTIONS OF STOICHIOMETRIC ENTS (Continued)	С	
Acetylene Derivative	RMgX (Eq. of CuX)	Carbometallation Conditions	Adduct	Electrophile	Substitution Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
	n-C ₄ H ₉ MgBr (1 eq E)	Ether, DMS (1:1), -23°, 2 h	C2H5 n -C4H9 Cu · MgBr2	Ś	Ether, DMS, HMPA, ^d −33°, 24 h	C ₂ H ₃	(82)	2186
	n-C ₃ H ₇ MgBr (l eq E)	Ether, DMS (1:1), -23°, 2 h	C_2H_3 $n - C_3H_2$ $C_U \cdot MgBr_2$	CX Po	Ether, DMS (1:1), -23 to 0°, 14 h		(50)	2186
	n-C₀H₁₃MgBr (1 eq E)	Ether, DMS (1:1), -23°, 2 h	C2H5 n-C6H15 Cu · MgBr2	$\overset{\circ}{\bigcirc}$	Ether, DMS (1:1), -23 to 0°, 14 h	C ₂ H ₅	(68)	218b
	n-C ₄ H ₉ MgBr (1 eq C)	Ether, -15°, 1 h	C2H5 n-C4H5 Cu · MgBr2	(C2H3)2NCH2SC6H3 (0.75 cq)	THF, ether (1:1), 25°, 3–4 h		(87)	225
	s-C4H9MgBr (1 eq C)	Ether, -15°, 1 h	C_2H_5 $n - C_4H_2$ $C_4 \cdot MgBr_2$	Iz	Ether, -30°	C ₂ H ₅	(73)	208
HCECCECH	n-C₄H₃MgCl (1 eq C)	THF, -60°, 30 min	HC=C + n-C4H Cu·MgBrCL + HC=C	NH₄Cl/H₂O	-	$\begin{array}{c} 3 - C_4 H_3 \\ HC \equiv C \\ n - C_4 H_3 \end{array} = CH_2 (70\%) \\ HC \equiv C \\ \end{array}$	(>80) +	201
CH₃C≣CCN	C ₆ H ₃ MgBr (1 eq C)	THF, 0°, 30 min	CIBrMg+Cu C_4H_{9} -n $C_6H_3 = CN$ $C_0 \cdot MgBr_2$	NH4CVH2O	-	$C_{4}H_{9}-n \qquad (3)$	30%) (94)	741a
C₂H₂C≡CCN	C₀H₃MgBr (1 eq C)	THF, -50°, 30 min		NH4CI/H2O		C ₂ H ₅	(92)	741a
	C _g H ₅ C ₂ H ₅ MgBr (1 cg B)	THF, -10°, 2.5 h		NH4Cl/H2O	-		(88)	741a
л -С₃Н⁊С≡СН	C ₂ H ₃ MgBr (1 eq E)	Ether, DMS (1:1), -23°, 2 h		SY'	Ether, DMS (1:1), -23 to 0°, 14 h	CAN CN	(50)	2186
				~ ~				

TABLE III. CARBOCUPRATION REACTIONS OF STOICHIOMETRIC

C2H5 C3H7-7

	Cu(I)/RMgX REAGENTS (Continued)				Cu(I)/RMgX READ	ENTS (Continued)		
Acetylene Derivative	RMgX (Eq. of CuX)	Carbometallation Conditions	Adduct	Electrophile	Substitution Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
C ₆ n-C₄H₀C≡CH	CHiMeBr	Ether, DMS (1:).	n-C.Ho	∧ Br	Ether, DMS, HMPT,	n -C.He	(84)	218a
	(1 eq E)	-25°, 65 h	Cu · MeBra	//~-	- 30°, 12 h	~~~<	(0.1)	2104
	C ₂ H ₃ MgBr (0.5 eq C)	THF, 0°, 1 h	n-C4H9	CH3SSO2CH3 (2 cq)	THF, -40°, 10 min	n-C4H9 CaH4 SCH4	()*	209
			C ₂ H ₅ CumgBr					
	C ₂ H ₃ MgBr (1 eq C)	Ether, -50 to -15°	C2H3 Cu · MgBr2	n -CgH ₁₁ C≡CBr	Ether, THF, TMEDA, - 15°, 2 h	n -C₄H ₉ C₂H ₅ C≡CC₃H ₁₁ -n	(78)	159
	C ₂ H ₃ MgBr	Ether, -50 to -15°	n-C4H9	(CH ₃) ₃ SiC≡CI	Ether, THF,	n-C4H9	(82)	159
	(10(0)		C2H Cu · MgBr2		2 h, then NaOCH ₃ , CH ₃ OH	C₂H₅ C≡CH		
	C ₂ H ₃ MgBr (1 eq C)	Ether, -50 to -15°	C2H5 Cu · MgBr2	THPOCH ₂ C <u>=</u> CBr	Ether, THF, TMEDA, -15°, 1 h, then 2 N H-SO.	ⁿ -C₄H ₉ C₂H ₅ C≡CCH ₂ OH	(80)	159
	C ₂ H ₃ MgBr	Ether, -15°, 1 h	n -C4H9	(C2H3)2NCH2SC6H3	Ether, THF (1:1),	n -C4H9	(71)	225
	(1 eq C)		C2H5 Cu · MgBr2	(0.75 eq)	25°, 3–4 h	C2H5 CH2N(C2H3)2		
	C ₂ H ₃ MgBr (1 eq C)	Ether, -15°, 1 h	r -C4H9 C2H5 Cu · MgBr2	\sim	Ether, -20°, 2 h	n-C4H9 C2H3	OH ⁽⁷⁸⁾	127
	C ₂ H ₃ MgBr (1 cq C)	Ether, -15°, 1 h	Cite Cu · MgBra	CO2	Ether, HMPT, 10% P(OC_2H_5) ₃ , -45°, 4 b	^{n-C4H9} C2H5	(95)	224
	n-C ₃ H ₇ MgBr (1 eq E)	Ether, DMS (1:1), -25°, 2 h	n-CaHe Cu MgBra		Ether, DMS, HMPA, -33°, 24 h ^d	п-С₄Н ₉ → ОН	(95)	218b
	n-C₃H7MgBr (1 cq E)	Ether, DMS (1:1), -25°, 2 h	n -C4H9 n -C3H7 Cu · MgBr2	\bigcirc	Ether, DMS, HMPA, -33° , 24 h ^d	С_С3Н7 - л	(26)	218b
	CH MaBa	THE - 50 to - 30°		B-CN	THE UNDER 609	C4H9-n	(> 00)	207
	(0.5 eq C)	1111, -30 10 -30	i-C3H CuMgBr	(2 eq)	20°, 15 min	1-C3H4 Br	(290)	207
	i-C ₃ H ₇ MgCl (1 eq C)	THF, -50 to -30°	<i>i-C</i> ₃ H4 <i>n-C</i> ₄ H ₉	CH ₃ SSO ₂ CH ₃	THF, -40°, 10 min	n -C4H9	(—)"	209
	CUM-P-	THE 50 to 200	i-C3H/ Cu · MgBrCl			I-C3HA SCH3	(02)	007
	(1 eq C)	$1 \text{ nr}, -30 \text{ to } -30^{\circ}$	i-C ₃ H	CICN	THF, -30 to -20"	1-Cally	(92)	227
	n-C4H9MgBr (1 eq C)	Ether, -15°, 1.5 h	n -C4H9 n -C4H9 Cu · MgBr2	CH3I	Ether, HMPT, P(OC ₂ H ₅) ₃ , - 10°, 1.5 h	n-C4H9	(63)	208

TABLE III. CARBOCUPRATION REACTIONS OF STOICHIOMETRIC

TABLE III. CARBOCUPRATION REACTIONS OF STOICHIOMETRIC

Acetylene Derivative	RMgX (Eq. of CuX)	Carbometallation Conditions	Adduct	Electrophile	Substitution Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
	C2H3MgBr (1 cq C)	Ether, -15°, 1.5 h	n-C4H9 C2H5 Cu · MgBr2	i-C3H7I	Ether, HMPT, P(OC ₂ H ₅) ₃ , -10°, 1.5 h	n-C4H9 i-C3H7	(15)	208
	n-C₄H9MgCl (1 cq C)	THF, -50°, 10 min	n -C4H9 n -C4H9 Cu · MgClBr	1. CS ₂ 2. CH ₃ I	1. THF, -50°, 30 min 2. THF, -50 to 0°	n-C4H9 i-C3H7 CSCH3	(80)	142
n-C₄H₂C≡CH	<i>n</i> -C ₅ H ₁₁ MgCl (0.5 eq C)	THF, 0°, 45 min	n-CeHy	NH ₄ Cl/H ₂ O	-	n -C ₄ H ₉ =CH ₂	(>95)*	7416
	C ₆ H ₁₁ MgCl (0.5 cq C)	THF, 0°, 45 min	n-C ₄ H ₉ C ₆ H ₁ n-C ₄ H ₉ VMcO	NH4C/H2O	-	$n - C_4 H_9 = CH_2 + C_6 H_1 I + C_6 H_1 - C_4 H_9 = CH_2 + C_6 H_1 - C_4 H_9 = CH_2 + C_6 H_1 + C_6 H_1$	(>95) ^ø	741b
	(CH ₃) ₃ SiCH ₂ MgCl (1 cq CuBr·Lil)	Ether, 10°, 18 h		NH4CI/NH4OH	-	n-C ₄ H ₉ (CH ₂)-CH ₂ (CH ₂)-Si-CH ₂	6 (78)	222b
	(CH3)3SiCH2MgCl (1 cq CuBrLil)	Ether, 10°, 18 h	n-C₄H9 (CH3)3Si→Cu · MgCl	Li ₂ CuCl ₄	THF, 20°, 2 h	(CH ₃) ₃ Si	(52) H ₃) ₃	222c
	(CH3)3SiCH2MgCl (1 eq CuBr·Lil)	Ether, 10°, 18 h	n-C4H9	l ₂	THF, 20°, 1 h	n-C4H9	(45)	222c
	(CH ₃) ₃ SiCH ₂ MgCl (1 eq CuBrLil)	Ether, 10°, 18 h	(CH ₃) ₃ Si Cu · MgCl	CH3COCI	THF, 5% Pd[P(C6H5)3]4, - 10°, 2 h		(42)	222c
ı-С₄Н₀С≡СН	ℓ-C₄H₀MgCl (0.5 cq C)	THF, 0°, 45 min	n-C4H9 XMgC4 C4H9-n	NH4CI/H2O	-	<i>t</i> -C ₄ H ₉ C ₄ H ₉ - <i>t</i> E:Z 90:10	(~30) ^ø	741b
С,								
<i>n</i> -C₅H ₁₁ C≡CH	C2H3MgBr (1 eq E)	 Ether, -45 to -25° HMPT, P(OC₂H₅)₃, -25° 2 b 	C2H5 n-C3H11	P(0)(0C2H3)2	Ether, -25 to 20°, 3 h	n-C ₅ H ₁ P(0)(00	(70) C ₂ H ₅) ₂	742
	(CH ₃) ₃ SiCH ₂ MgCl (1 eq C)	Ether, 30°, 48 h	(CH ₃) ₃ Si-Cu · MgBrCl	NH4CI/NH4OH	-	(CH ₃) ₃ Si-CH ₂	(78)	222a
C ₈	1. S. 1.					1. 20.		
<i>п</i> -C ₆ H ₁₃ C≡CH	[CH ₃ MgCl (0.5 eq CuBr·LiBr)] (5 eq)	THF, 30°, 5 h	n-C ₆ H ₁₃	NH4C/H2O		<i>n</i> -C ₆ H ₁₃)=CH ₂	(>95)*	7416
	CH ₃ MgBr (1 cq E)	Ether, DMS (1:1), -25°, 65 h	n-C ₆ H ₁₃	<i>∕</i> ^{Br}	Ether, DMS, HMPT, -30°, 12 h	n-C6H13	(81)	218a

TABLE III. CARBOCUPRATION REACTIONS OF STOICHIOMETRIC Cu(I)/RMgX REAGENTS (Continued)

	TABLE III. CARBOCI Cu(I)/RM	UPRATION REACTIONS OF ST gX REAGENTS (Continued)	OICHIOMETRIC	TABLE III. CARBOCUPRATION REACTIONS OF STOICHIOMETRIC Cu(I)/RMgX REAGENTS (Continued)				
Acetylene Derivative	RMgX (Eq. of CuX)	Carbometallation Conditions	Adduct	Electrophile	Substitution Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
	CH ₃ MgBr (1 eq E)	Ether, DMS (1:1), -25°, 65 h	n -C ₆ H ₁₃ →	CH3COCI	Ether, DMS, HMPT, - 30°, 12 h	/ -C ₆ H ₁₃	(65)	218a
	CH ₃ MgBr (1 eq E)	Ether, DMS (1:1), -25°, 5 d	n-C6H13	\bigcirc	Ether, DMS (1:1), -23 to 0°, 14 h	ů	(63)	218b
	C2H3MgBr (I eq E)	Ether, DMS (1:1), -23°, 2.25 h	n -C ₆ H ₁₃ C ₂ H ₅ Cu · MgBr ₂	\bigcirc	Ether, DMS (1:1), -23 to 0°, 14 h	C ₆ H ₁₃ -n	(70)	2186
	C2H3MgBr (1 cq E)	Ether, DMS (1:1), -23°, 2.25 h	$\begin{array}{c} n - C_6 H_{13} \\ C_2 H_3 \end{array}$	C6H5 C6H5	Ether, DMS (1:1), -23 to 0°, 14 h	$C_6H_{13} - n$ $n - C_6H_{13}$ C_2H_5 $C_6H_{13} - n$	(52) Is	218b
	C₂H₃MgBr (1 eq E)	Ether, DMS (1:1), -23°, 2.25 h	$r - C_6 H_{13}$ $C_2 H_3$ $C_u \cdot MgBr_2$	() CC)	Ether, THF, DMS, ⁴ HMPA, 4°, 60 h		(62)	218b
	C₂H₃MgBr (1 cq E)	Ether, DMS (1:1), -23°, 2.25 h	n-C ₆ H ₁₃	\mathcal{L}	Ether, DMS, HMPA, ^d - 78°, 4 h	C ₆ H ₁₃ - <i>n</i>	(30)	218b
	C2H3MgBr (1 cq E)	Ether, DMS (1:1), -23°, 2.25 h	n -C ₆ H ₁₃	COCH3	Ether, DMS, HMPA, ^d - 23°, 12 h	C ₆ H ₁₃ -n C ₂ H ₅	(69)	218b
	C₂H₃MgBr (1 eq E)	Ether, DMS (1:1), -23°, 2.25 h	$\begin{array}{c} n - C_6 H_{13} \\ C_2 H_3 \end{array} C_1 \cdot MgBr_2$	C ₆ H ₅ COCH ₃	Ether, DMS, HMPA, ⁴ 4°, 12 h	C ₂ H ₃ C ₂ H ₅ C ₂ H ₅ C ₂ H ₅ C ₂ H ₅ C ₂ H ₅	(53)	218b
	C ₂ H ₃ MgBr (1 eq E)	Ether, DMS (1:1), -23°, 2.25 h	n-C ₆ H ₁₃	n-C5H11-	Ether, DMS, HMPA, d – 33°,	<i>n</i> -C ₆ H ₁₃ <i>OH</i>	-11	2186
	C₂H₃MgBr (1 eq E)	Ether, DMS (1:1), -23°, 2.25 h		NCS	24 n Ether, DMS, THF, -25°, 1 h	n-C6H13	(61)	206
	C ₂ H ₃ MgBr (1 eq C)	THF, -15°, 1 h	n -C ₆ H ₁₃ C ₁ H ₂ C ₁ · MgBr ₂	NH4CVH2O	-	C ₂ H ₅ Cl n-C ₆ H ₁₃ →=CH ₂	(10–15) ⁶	185
	C ₂ H ₃ MgBr (0.5 eq C)	THF, 0°, 45 min	$\begin{array}{c} n-C_6H_{13} \\ \hline \\ C_2H_5 \end{array} \begin{array}{c} \hline \\ C_0(C_2H_5)MgBr \end{array}$	NH4CI/H2O	÷.	$\begin{array}{c} C_2H_5\\ n - C_6H_{13}\\ \leftarrow C_2H_5 \end{array} = CH_2$	(>95)*	741b

TABLE III. CARBOCUPRATION REACTIONS OF STOICHIOMETRIC Cu(I)/RMgX REAGENTS (Continued)

Acetylene Derivative	RMgX (Eq. of CuX)	Carbometallation Conditions	Adduct	Electrophile	Substitution Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
	C ₂ H ₃ MgBr (1 eq CuOC ₄ H ₉ -1)	THF, -10°, 20 min	n-C6H13	NH4CI/H2O	-	n-C6H13 = CH2	(>95)*	185
C6H ¹¹ C≡CH	n-C₄H9MgCl (0.5 eq C)	THF, 0°, 45 min		NH4CI/H2O	-	C ₆ H ₁₁ C ₆ H ₁₁ CH ₂	(>95)*	7416
с₅н₅с≡сн	C ₂ H ₅ MgBr (1 eq C)	THF, -50 to -30°, 10 min	C ₆ H ₅	NH4CI/H2O	-	C_2H_3 C_6H_5 =CH ₂	(>95) ⁶	185
	n-C ₅ H ₁₁ MgBr (1 eq C)	THF, -20°, 30 min	C ₂ H ₃ Cu · MgBr ₂	NH ₄ Cl/H ₂ O	8	C₂H5 C6H5)=CH2	(>95)*	185
	<i>i</i> -C₃H₂MgBr (1 cq C)	THF, -20°, 30 min	$r - C_{5}H_{1}$ $C_{6}H_{5}$ $i - C_{3}H_{7}$ $C_{4}H_{7}$ $C_{4}H_{6}$ $C_{4}H_{7}$ $C_{4}H_{7}$	NH4CI/H2O	—	$\begin{array}{c} n \cdot C_{5}H_{1} \\ C_{6}H_{5} \\ \end{array} = CH_{2} + i \cdot C_{3}H_{1} \\ \end{array}$	(>95)*	185
			CIBrMgCu C3H7-i			ConsC3H7-i 70	0:30	
	i-C ₃ H ₇ MgBr (0.5 eq C)	THF, −20°, 1 h	C ₆ H ₅ i-C ₃ H ₇ CuMgX + C ₃ H ₇ -i	NH4C/H2O	-	$C_6H_5 = CH_2 + i - C_3H_7$	(>95) ^₀	7416
	CH ₃ MgCl (0.5 cq I) (2 cq)	THF, 0°, 1 h	XMgCu C ₃ H ₇ -i C ₃ H ₇ -i	NH4C/H2O	_	°C ₃ H ₇ - <i>i</i> 70 C ₆ H ₅ →=CH ₂	:30 (>90) ⁶	741b
	C ₂ H ₅ MgBr (1 cq C)	THF, -50 to -30°		BrCN	THF, HMPT, -50°, 20°, 15 min	CeHs	(>90)	207
	C ₂ H ₅ MgBr (1 eq C)	THF, -50 to -30°	CoHe Or MeBra	(C ₆ H ₅) ₃ SnCl	THF, -40°, 1.5 h		(—) ^a	209
	C₂H₃MgBr (1 eq E)	Ether, DMS (1:1), -25°, 4 h		NCS	Ether, THF, DMS, -25° , 1 h		(63)	206
	n-C₄H₀MgBr (1 eq C)	THF, -50 to -20°, 30 min	Collis CurMeBra	(C2H3)2NCH2SC6H3 (0.75 cq)	THF, ether (1:1), 25°, 3 h	C ₂ n ₅ C ₆ H ₅ r-C ₄ H ₅ CH ₃ N(C ₂ H ₅)	(66)	225
C ₆ H ₅ C≡CSCH ₃	C ₆ H ₅ MgBr (0.5 eq C)	THF, 30°, 1 h	C ₆ H ₅ C ₆ H ₅ C ₆ H ₅ SCH ₃ 2Cu·MgBr ₂	1. CS ₂ 2. CH ₃ I	1. THF, 30°, 1 h 2. THF, 30°, 1 h	C ₆ H ₅ C ₆ H ₅ C ₆ H ₅ C ₅ CH ₃	(98)	142
						S		
C6H3C≡CCN	CH ₃ MgCl (1 eq C)	THF, -50°, 15 min		NH4CVH2O	$\frac{1}{2}$	C6H5	(95)	741a
	CH₃MgCl (0.5 cq C)	THF, -50 to 30°, 1 h		NH ₄ Cl/H ₂ O	-	^{C₆H₅⟩=^J^{CN}}	(93)	741a

TABLE III. CARBOCUPRATION REACTIONS OF STOICHIOMETRIC Cu(I)/RMgX REAGENTS (Continued)

 TABLE III.
 CARBOCUPRATION REACTIONS OF STOICHIOMETRIC Cu(I)/RMgX REAGENTS (Continued)

	outsinement to to the state of							
Acetylene Derivative	RMgX (Eq. of CuX)	Carbometallation Conditions	Adduct	Electrophile	Substitution Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
	C ₂ H ₃ MgBr (1 eq C)	THF, -50°, 30 min	C ₆ H ₅ <i>n</i> -C ₄ H ₅ Cu [·] MgBr ₂	NH4CVH2O	-	C_6H_5	(92)	741a
	n-C₄H₀MgBr (1 cq C)	THF, -50°, 10 min	C_6H_5 C_2H_5 CN $Cu MgBr_2$	NH4CI/H2O	-	C6H5 CN	(96)	741a
C)-C≡CCN	CH3MgCl (1 eq C)	THF, 0°, 30 min		NH4CI/H2O	_	CN	(90)	741a
Ciu								
C ₆ H ₅ CECCECH	ı-C₄H₀MgCl (l eq I)	THF, -60°, 30 min	C ₆ H ₅ C≡C + <i>i</i> -C ₄ H ₅ C⊡·MgBrCl + C ₆ H ₅ C≡C - ClBrMg·Cu C ₄ H ₉ - <i>i</i>	NH₄Cl/H₂O		$C_{6}H_{5}C \equiv C$ $C_{6}H_{5}C \equiv C$ $C_{6}H_{5}C \equiv C$ $C_{6}H_{5}C \equiv C$ $C_{4}H_{9}$ $42:58$	(>80)	201
C ₁₃								
	C ₂ H ₃ MgBr (1 eq C)	THF, -50°, 15 min	C ₂ H ₅ C ₂ H ₅ C ₂ H ₅ CurMgBr ₂	NH4CVH2O	-	$C_{2H_{5}} C_{2H_{5}} CN$	(98)	741a

TABLE III. CARBOCUPRATION REACTIONS OF STOICHIOMETRIC Cu(I)/RMgX REAGENTS (Continued)

TABLE III. CARBOCUPRATION REACTIONS OF STOICHIOMETRIC Cu(I)/RMgX REAGENTS (Continued)

" Yields are in the range 80-95%.

^b The yield was not reported; the number represents the percent conversion of the alkyne.

' The preparation of the reagent was not specified.

^d 1-Lithio-1-pentyne (1 eq) was added to the alkenylcopper prior to addition of the electrophile.

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		Ref
	A. Reactions of A	lkyl, Alkenyl, and Aryl Halides and	Sulfonates		
CI CH ₃ I	t-C ₄ H ₉ CH(CH ₃)Cu(CH ₃)Li t-C ₄ H ₉ CH(n-C ₄ H ₉)Cu(n-C ₄ H ₉)Li C ₆ H ₁₁ CH(CH ₃)Cu(CH ₃)Li	Ether, -70 to 0°, 30 min Ether, -70 to 0°, 30 min Ether, -70 to 0°, 30 min	t-C4H9CH(CH3)2 t-C4H9CH(CH3)C4H9-n C6H11CH(CH3)2	(89) (86) (75)	74 74 74
	γ_{μ}	Ether, -70 to 0°, 30 min	$\gamma\gamma\gamma\gamma$	(23)	74
"CH ₃ I	(n-C ₆ H ₁₇) ₂ CuLi (C ₆ H ₅) ₂ CuLi	Ether, 30°, 10 min Ether, 30°, 30 min	n-C ₈ H ₁₇ [¹¹ C]H ₃ C ₈ H ₅ [¹¹ C]H ₃	(95)* (99)*	27
		Ether, 30°, 15 min	CCCH3	(95)*	27
2	CH30 OCH3		CH30 OCH3		
BrCH ₂ CO ₂ CH ₃		THF, -60 to 25°, 1.5 h	CH ₂ CO ₂ CH ₃	(32)	31
C6H5(0)2S	(CH ₃) ₂ CuLi	Ether, 0°, 30-45 s	C ₆ H ₅ (0) ₂ S (75.	-95)*	29
C ₆ H ₅ (0) ₂ SF	(CH ₃) ₂ CuLi	Ether, 0°, 30-45.s	C ₆ H ₅ (O) ₂ S 50:50 E:Z (75-	-95)*	29
a otro	(<i>n</i> -C ₄ H ₉) ₂ CuLi	Ether, 20°, 2 h	C4H9-n	(80)	28
O ² CCH ₃	(n-C4H9)2CuLi	THF, -78 to 0°, 1.5 h	O NH	(89)	74
SO ₂ C ₆ H ₅	(n-C4H9)2CuLi	THF, -78 to 0°, 1.5 h	C4H9-n	(94)	74
		THF, -78 to 0°, 1.5 h	0 NH	(100)	74
⊂s=o	(CH ₃) ₂ CuLi	Ether, 0°, 15 min	CH ₃ S(O)(CH ₂) ₃ OH	(59)	29
0	(C ₆ H ₅) ₂ CuLi	Ether, 0°, 15 min	C ₆ H ₅ S(O)(CH ₂) ₅ OH	(32)	29:
-3 TsO NHCO ₂ C ₄ H ₉ -1 (L)	(C2H3)2CuLi (4 eq)	Ether, -60°, 3 h	CH ₂ =CO ₂ CH ₃ NHCO ₂ C ₄ H ₉ -1	(90)	28
I CO ₂ CH ₃ NHCO ₂ C ₄ H ₉ -t (L)	(C2H3)2CuLi (4 eq)	Ether, -60°, 3 h	$CH_2 = \underbrace{CO_2CH_3}_{NHCO_2C_4H_{9^{-4}}} + C_{2H_4} + C_{2H_4} + C_{2CH_3}$	(42)	28
I CO2CH3	(С.Н.)-СиLi	Ether 60°, 3 h	C ₂ H ₅ C ₂ H ₅ C ₂ H ₅	(70)	28

TADIETV	Supermitterion	DEACTIONS OF	LOUTE OPPER	Immo	ORCANOCURDATES
IADLE IV.	SUBSTITUTION	REACTIONS O	r LOWER-ORDER	LIHO	ORGANOCUPRATES

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		
	(n-C3H3)2CuLi (4 eq)	Ether, -60°, 3 h	n-C ₃ H ₇ CO ₂ CH ₃ NHTs	(74)	282
	(C ₆ H ₅) ₂ CuLi (4 eq)	Ether, -10° , 5 h	C ₆ H ₅ CO ₂ CH ₃ NHTs	(65)	282
	(4 eg)	Ether, -60°, 18 h	NHTs	(69)	28
	H3)2 n-C4H4Li + 0.6 eq Cul 5)2	THF, TMEDA, -78°, 15 min	F P(O)(OC ₃ H ₄)	(65)	74
THPO)3 s-C4H9(C4H3S)CuLi, 2.5 eq	THF	THPO-Si(CH ₃) ₃	(65)	74
O ₂ CCH ₃	[TBDMSO(CH ₂) ₃] ₂ CuLi, 2 eq	Ether, DMS, -50°, 30 min	(CH ₂) ₃ OTBDMS	(98)	741
Br		Ether, THF, -78°, 20 min	Br John NH	(75)	74
O' OH Br CO ₂ C ₂ H ₅	(n-C₁H₄)₂CuLi (3 eq) H5	Ether, -80 to -20° , 1 h	cis:trans 5:95 OH n-C ₅ H ₁₁ CO ₂ C ₂ H ₅	(71)	749
Br(CH ₂) ₃ Cl	$Cu(C = C - C_3 H_{7} - n)Li$	THF, -20°	(CH ₂) ₃ Cl	(76)	750
C₄ n-C₄H₀Br	t-C4H9CH(CH3)Cu(CH3)Li	Ether, -70 to 0°, 30 min	t-C_H_CH(C_H_9-n)CH3	(83)	743
Br(CH ₂) ₄ Cl	D)→2CuLi	THF, -35°, 1.5 h	(CH ₂) ₄ Cl	(90)	28
	: (C4H5)2CuLi S	Ether, THF, 25°, 2 h	X0+CH ₂ C ₆ H ₅	(47)	75
C6H5CH2OCH2	(<i>n</i> -C ₄ H ₉) ₂ CuLi Br (4 eq)	1. THF, -48°, 30 min 2Br	C ₆ H ₅ CH ₂ OCH ₂	(65)	284
	I3 (t-C4H9)2CuLi H5 (4 eq)	Ether, $(n-C_4H_9)_2S$, -60° , 18 h	r-C4H9 NHCOC6H5	(74)	282
(L)	(<i>n</i> -C ₃ H ₇) ₂ CuLi (4 eq)	Ether, -60°, 3 h	n-C ₃ H ₇ NHCOC ₆ H ₅	(75)	282
	2CuLi (4 eq)	Ether, $(n-C_4H_9)_2S$, -60° , 18 h	NHCOC ₆ H ₅	(69)	28
I CO ₂ CH NHCOC ₆ F	H_3 H_5 (4 eq)	Ether, $(n-C_4H_9)_2S$, -60° , 18 h	MHCOC ₄ H ₄	(65)	28
(L) I NHCO ₂ CH ₃ NHCO ₂ CH ₂ C ₆ F (L)	$ \begin{array}{c} $	Ether, $(n-C_4H_9)_2S$, -60° , 3 h	0 C ₂ H ₅ (CH ₂) ₅ (CH ₂) ₅ NHCO ₂ CH ₂ CO ₂ CH ₃	(71) 6H5	28

TABLE IV. SUBSTITUTION REACTIONS OF LOWER-ORDER LITHIO ORGANOCUPRATES (Continued)

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)	Refs
	$\left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2 \end{array} \right)^2 CuLi$	Ether, $(n-C_4H_9)_2S$, -60° , 3 h	$O O O (CH_{2})_{3} O O O O O O O O O O O O O O O O O O O$	282
Br CO ₂ CH ₃ NHCO ₂ C ₄ H ₉ -r	(<i>n</i> -C ₄ H ₉) ₂ CuLi (4 eq)	THF, -10°, 7 h	$n - C_6 H_{13} \xrightarrow{CO_2 CH_3} (74)$ $NHCO_2 C_4 H_9 - t$	282
	(n-C4H9)2CuLi (4 eq)	Ether, -5°, 14 h	$ee > 95\%$ $n - C_6H_{13} \qquad CO_2CH_3$ $NHCO_2C_4H_9 - t$ (51)	28
	(C ₆ H3)2CuLi (4 eq)	Ether, -5°, 14 h	$C_{gH_{5}} \xrightarrow{CO_{2}CH_{3}} (71)$ $NHCO_{2}C_{4}H_{9}-t$	28
Br CO ₂ CH ₃ NHCO ₂ C ₄ H ₉ -r	$()_{2CuLi}$ (4 eq)	Ether, -5°, 14 h	$ce > 95\%$ (44) (44) $NHCO_2C_4H_9-t$	282
C2H5O2C ToTs	(CH3)2CuLi	Ether, 0-5°, 15 h	ee > 95% $C_{2H_5O_2C} \xrightarrow{F} C_{2H_5}$ (50)	752
OP(0)(OC ₂ H ₅) ₂ CO ₂ CH ₃	(C2H5)2CuLi (2 eq)	Ether, -90 to -45° , $1-4$ h	C_2H_5 (>90) rCO_2CH_3 (>90) 16:84 E:Z	288
Co-Stop	(C₀H₅)₂CuLi	Ether, 0°, 15 min	C,H,S(O)(CH₂),OH (52)	293
n-C ₄ H ₉ I	CH3-N_N_O CuLi	C ₆ H ₆ , THF, -42 to 0°, 5 h	CHO C ₄ H ₉ - <i>n</i> (47)	753
C,			1	
Br(CH ₂) ₄ - CH(OC ₂ H ₅) ₂	() 2CuLi	THF, -35°, 1.5 h	(CH ₂) ₄ CH(OC ₂ H ₅) ₂ (72)	281
	(n-C4H2)2CuLi	Ether, -20°, 4 h	(45)	754
OTs OCH2C6H5	(n-C ₈ H ₁₇) ₂ CuLi	Ether, -45°, 2 h	n-C ₆ H ₁₇ C.H. (73)	75
CO ₂ CO ₂ H	(C ₆ H ₅) ₂ CuLi (2 eq)	Ether, THF, DMS 0°	(90)	75
Br	(n-C ₆ H ₁₃)2CuLi	Ether, -20°, 4 h	$n-C_{7}H_{15}$ (71) E:Z 4.5:1	75
C, I(CH2)4	([¹³ C]H ₃) ₂ CuLi	Ether, 25°, 12 h	¹³ CH ₃ (CH ₂) ₄ ()	279

TABLE IV. SUBSTITUTION REACTIONS OF LOWER-ORDER LITHIO ORGANOCUPRATES (Continued)

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		Refs
C ₆ H ₁₁ I	n-C4H9Cu(-CEC-COCH3)Li	THF, -20°	$C_6H_{11}C_4H_{9}-n$	(40)	266
OTs OTs	(n-C,H ₃) ₂ CuLi (2 eq)	Ether, CH_2Cl_2 , -20° , 2 h	OCH2C6H5 C5H11-n	(80)	280
CO ₂ CH ₃	n-C4H9)2CuLi (2 eq)	Ether, -90 to -45° , $1-4$ h	Co ₂ CH ₃	(67)	288
	(n-C ₄ H ₂) ₂ CuLi (2 eq)	Ether, <i>n</i> -C ₄ H ₉ Br, -90 to -45°, 1-4 h	C ₄ H ₉ -n CO ₂ CH ₃	(80)	288
OP(O)(OC ₂ H ₅)	(t-C₄H ₂)2CuLi 2 (2 eq)	Ether, -90 to -45°, 1-4 h		(83)	288
ОР(О)(ОС-Н-)	(CH3)2CuLi (2 eq)	Ether, -90 to -45°, 1-4 h	Ŷ	(74)	288
C,H,I	CH ₃ O C ₆ H ₅ S	THF, -78°, 3 h	CH3O C6H3 C6H3	(—)	758
Jo Porcer	H3 (CH3)2CuLi	Ether, -78°, 1 h	Se la	(80)	759
C.H.SO2CH3 C.H.SO2CH2CH-10	(CH ₃) ₂ CuLi (<i>n</i> -C ₄ H ₉) ₂ CuLi (C ₆ H ₅) ₂ CuLi (CH ₄) ₂ CuLi	Ether, 0° , 15 min Ether, -40°, 15 min Ether, 0°, 15 min Ether, 0°, 15 min	C ₆ H ₅ S(O)CH ₃ C ₆ H ₅ SC ₄ H ₅ -n (C ₆ H ₅) ₂ S==O C ₄ H ₅ (O)CH ₂ +	(59) (36) (50) (22)	293 293 293 293
p-CH ₃ C ₆ H ₄ SO ₂ R*4	(CH ₃) ₂ CuLi	Ether, 0°, 1 h	(C ₄ H ₃)SCH ₃ p-CH ₃ C ₄ H ₄ S(O)CH ₃	(53) (55)	293
(3)	(C ₆ H ₅) ₂ CuLi	Ether, 0°, 1 h	(R) ^e (R) ^e	(59)	293
CH ₃ CO ₂ BOCNH R	(CH3)2CuLi	Ether, -15 to 0°	CH ₃ BOCNH R	(51)	863
$R = \frac{0}{BOCNH}$ $C_{6}H_{5}CH_{2}O$ BOC	CNH OH O'M NHBOC				
7	CH30 OCH3		CH ₃ O_OCH ₃		
C,H,CH2Br	CH30 OCH3	THF, -60 to 25°, 1.5 h	CH ₃ O OCH ₃	(67)	310
CH ₃		THF, -20°	OCH3	(92)	266
OCH3	THPO		OCH ₃		

TABLE IV. SUBSTITUTION REACTIONS OF LOWER-ORDER LITHIO ORGANOCUPRATES (Continued)

Substrate	Organocuprate Conditions		Product(s) and Yield(s) (%)		Refs
OTBDMS n-C5H11 OTS	(n-C4H9)2CuLi (2 eq)	Ether, -20°, 2 h	(<i>n</i> -C ₅ H ₁₁) ₂ CHOTBDMS	(90)	280
Br	(n-C4H4)2CuLi (5 eq)	Ether, -48°, 1 h, then CH ₃ I, -48 to 25°, 3 h	C4H9-n	(82)	2841
	(n-C4H9)2CuLi (5 eq)	Ether, -48 to 0°, 1 h, then CH ₃ I, 0 to 25°, 16 h	C4Hg-n	(78)	2841
	(2 eq)	Ether, -70 to -20°, 1 h, then CH ₃ I, -20 to 25°, 16 h	Ŷ,	(44)	2841
OP(O)(OC ₂ H ₅) ₂ CO ₂ CH ₃	(n-C4H9)2CuLi (2 eq)	Ether, <i>n</i> -C₄H ₉ Br, -90 to -45°, 1-4 h	C_4H_9-n C_2CH_3	(73)	28
	(s-C₁H₂)₂CuLi (2 eq)	Ether, -90 to -45° , $1-4$ h	C ₄ H ₉ -3 CO ₂ CH ₃	(20)	28
	(t-C4H9)2CuLi (4 eq)	Ether, -90 to -45°, 1-4 h	C ₄ H ₉ - <i>t</i> COC ₄ H ₉ - <i>t</i>	(80)	28
n-C4H9	(C2H3)2CuLi (1 eq C2H3Li)	Ether, 0-10°, 24 h	n-C4H9	(74)	76
S H Br Br	(CH ₃) ₂ CuLi (10 eq)	-		Br (97)	76
n-C ₆ H ₁₃ CH(I)OTMS	(n-C4H2)2CuLi CuI (1 eq)	Ether, -20 to 25°, 1 d	47:53 n-C ₆ H ₁₃ CH(OH)C ₄ H ₉ -n	(77)	76
CI C6H5 NC6H13-n	CH3(OC4H9-1)CuLi	THF, -78°, 15 min	C6H5 NC6H13-n	(55)	76
E LOTs	(n-C4H9)2CuLi (5 eq)	Ether, 0°, 3 d	n-C4H9	(84)	5
	r-C4H4(SC4H5)CuLi (5 eq)	Ether, 0°, 3 d	t-C ₄ H ₉	(91)	5
n-C _∗ H₁ ₇ Br	$(= c =)_{2CuLi}$	THF, 0°, 45 min	}=c=	(91)	76
Br	(n-CH).Culi	1. THF48 to 0°. 30 min		(65)	284

TABLEIV	SUBSTITUTION DEACTIONS OF LOWER OPDER I THUS OR ANOCURRATES (Continued)	
TABLE IV.	SUBSTITUTION REACTIONS OF LOWER-ORDER LITHIO ORGANOCUPRATES (Conunuea)	

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
			H		
	(n-C4H5)2CuLi (4 eq)	THF, -48 to 0°, 30 min, then <i>n</i> -C ₈ H ₁₇ Br, 0°, 30 min	H C ₈ H ₁₇ -n	(50)	284a
n-C7H15 NC6H	CH3(t-C4H2O)CuLi 13 ⁻ⁿ	1. THF, −78°, 15 min 2. H*/H ₂ O	n-C ₇ H ₁₅ COCH ₃	(63)	763
C ₆ H ₅ Br		Ether, THF, Pd[PC_6H_5)3]4 (cat.), 20°, 2 h		(59)	765
<i>n</i> -C ₈ H ₁₇ I	Cu(SC ₆ H ₅)Li	-	C3H17-n	()	766
n-C6H13	[(CH ₃) ₃ Sn] ₂ CuLi	THF, -50°	n-C ₆ H ₁₃	(—)	767
CI(CH ₂)6 CH ₂	Li ₂ CuCl ₄ (cat.)	THF, 0°	CH2	(72)	768
OP(O)(OC ₂ H) CO ₂ CH ₃	s ⁾ 2 (C ₂ H ₅) ₂ CuLi (2 eq)	Ether, -90 to -45° , $1-4$ h	CO ₂ CH ₃	(79)	288
F F C ₆ H ₅	(<i>n</i> -C₄H ₉)₂CuLi (5 eq)	1. THF, TMEDA, -60° , 1 h 2. $I - 60^{\circ}$, 1 h	F F C ₆ H ₅	(88)	289
	(n-C4H9)2CuLi (5 eq)	1. THF, TMEDA, -60° , 1 h 2. 4° -60°, 1 h Cl	F F C ₆ H ₅	(44)	289
	(n-C4H9)2CuLi (5 eq)	1. THF, TMEDA, -60° , 1 h 2. 360^{-10} Br -60° , 1 h	F F C ₆ H ₅	(90)	289
Br	(CH ₃) ₂ CuLi (10 eq)	Ether, 25°, 15 h	Į.	(82)	769
CO ² H		Ether, 25°, 16 h	CO2H	(38)	770
C ₆ H ₅ CH ₂ CO ₂ C ₆ H ₅ CH ₂ CO ₂ H	H Mrs (CH3)2CuLi (4 eq)	Ether, 0°, 3 h	$C_6H_5CH_2 - H$ (R) ee = 78%	(55–63)	283
C ₆ H ₅	(n-C4H9)2CuLi (4 eq)	THF, -48°, 30 min, then, -48°, Br 30 min	C ₆ H ₅ + C ₆ H ₅ / + 70:30	(97)	284a
	$(n-C_4H_9)_2$ CuLi (4 eq)	THF, -48° , 30 min, then O ₂	C ₆ H ₅	(60)	284a
	(n-C ₄ H ₉) ₂ CuLi (4 eq)	THF, -48° , 30 min, then C_6H_5COCI	C6H3 COC6H5	(95)	284a

TABLE IV. SUBSTITUTION REACTIONS OF LOWER-ORDER LITHIO ORGANOCUPRATES (Continued)

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		Refs
<i>n</i> -C ₆ H ₁₃	(n-C ₄ H ₉) ₂ CuLi (4 eq)	THF, -48°, 30 min, then BrCH ₂ CO ₂ CH ₃ , -48°, 30 min	n-C ₆ H ₁₃ H	(75)	284a
Br	(n-C4H9)2CuLi (4 eq)	THF, -48 to 0°, 30 min, then CH ₃ I, -48°, 30 min	or ́	(96)	284a
C ₆ H ₅ Br Br	(n-C ₄ H ₉) ₂ CuLi (5 eq)	Ether, -48 to -20°, 1 h, then CH ₃ COBr, -78 to 25°, 15 h	C_6H_5 C_4H_9-n C_6H_5 C_4H_9-n	(34)	2841
			COCH ₃ 80:20		
C ₆ H ₅ Br Br	(s-C4H9)2CuLi (5 eq)	Ether, -78 to -20° , 3 h, then CH ₃ I, -20 to 25°, 5 h	$C_{6}H_{5}$ + $C_{4}H_{9}-s$ +	(43)	2841
			80:20		
	(t-C4H4)2CuLi (5 eq)	Ether, -55 to -20°, 3 h, then CH ₃ I, -20 to 25°, 15 h	C6H5 C4H9-t	(20)	2841
	(CH ₃) ₂ CuLi (3 eq)	THF, -78 to 25°, 15 h	C6H5	(48)	2841
	/2CuLi (3 eq)	Ether, -48 to 0°, 3 h	C6H5	(47)	2841
C ₆ H₅∕∕	(CH3)2CuLi	Ether, DME, 50°, 2 h	C ₆ H ₅	(85)	28
C°H2	(CH ₃) ₂ CuLi	Ether, DME, 50°, 2 h	C6H5	(88)	28
Br	2 CuLi (4 eq)	Ether, -78°, 2 h		(18)	77
	(CH ₃) ₂ CuLi (excess)	Ether, hexane		(50–60)	77.
+C4H5 OT	Y (n-C ₄ H ₉) ₂ CuLi	THF, -15°, 12 h	t-C4H9-n	(100)	28
	(C ₆ H ₅) ₂ CuLi	THF, -15°, 12 h	PC-Ho C6H5	(75)	28
OP	Y(O)(OC ₆ H ₅) ₂		C4Hg-n		
1-C4H9	(n-C4H9)2CuLi	THF, -30°, 12 h	r-C4H9	(59)	28
	(CH ₃) ₂ CuLi	THF, -30°, 12 h	1-C4H9	(11)	28
OP(O)(OC ₂ H ₅) ₂ CO ₂ CH ₃	(CH ₃) ₂ CuLi (2 eq)	Ether, -90 to -45°, 1-4 h	CO ₂ CH ₃	(92)	28

TABLE IV. SUBSTITUTION REACTIONS OF LOWER-ORDER LITHIO ORGANOCUPRATES (Continued)

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
C ₆ H ₅ OCH ₂ CONH	H CI H CH ₃) ₂ CuLi CO ₂ CH ₂ CCI ₃	-		(80)	773
	(p-CH₃C₂H₄)₂CuLi	-	C4Ho-n	(—)	774
	(n-C4H2)2CuLi	Ether, -78°, 3 h	\bigcirc	(84)	775
l C₄H9-t n-C₄H₅S(O)C₅H	Is (n-C ₄ H ₉) ₂ CuLi	Ether, -40°, 1 h	C4H9-t n-C4H9SC6H3	(80)	293
t-C₄H₅COC(Br)	(2 eq) - (CH ₃) ₂ CuLi	Ether, CH ₃ I, 0°, 2 h	t-C4H9COC(C2H3)2CH3	(68)	776
$(C_2H_5)_2$	(2 eq) (C ₂ H ₅) ₂ CuLi	Ether, C ₂ H ₅ I, 0°, 2 h	t-C4H9COC(C2H3)3	(22)	776
n-C ₈ H ₁₇ C ₆ H ₅ Se H	(2 eq) H₄CH₃-p CH₃Cu(SeC₅H₃)Li	THF, 0°, 3 h	^{n-C₈H₁₇} CH ₃ SO ₂ C ₆ H ₄ CH ₃ -p	(86)	דדד
C ₁₁ (C ₂ H ₃) ₃ - CCOCBr(CH	(CH3)2CuLi I3)2 (2 eq) (C2H3)2CuLi	Ether, CH ₃ I, 0°, 2 h Ether, C ₂ H ₅ I, 0°, 2 h	(C2H3)3CCOC4H3-1 (C2H3)3CCOC(CH3)2C2H3	(79) (51)	776 776
d	(2 eq) (CH ₃) ₂ CuLi	THF, -15°, 12 h	ch	(76)	286
C ₆ H ₅ Se(O) ₂ ····································	$C_{0}H_{5}$ H (CH ₃) ₂ CuLi	Ether, THF, 20°, 12 h	CH3 C6H5 OH	(50)	778
Br	(CH ₃) ₂ CuLi (10 eq)	Ether, -20°, 4 d	T	(29)	779
	(n-C ₄ H ₉)2CuLi OC ₆ H5)2	THF, -30°, 12 h	C CaHg-n	(52)	287
Br	(C,Hs)2CuLi D	Ether, 0°, 4.5 h	C ₆ H ₅ D	(60)	571
80:20 E:Z C ₁₂ OP($(O)(OC_2H_3)_2$ (CH ₃) ₂ CuLi CO_2CH_3 (2 eq)	Ether, -90 to -45°, 1-4 h	>89:11 E:Z	, (91)	288

TABLE IV. SUBSTITUTION REACTIONS OF LOWER-ORDER LITHIO ORGANOCUPRATES (Continued)

TABLE IV. SUBSTITUTION REACTIONS OF LOWER-ORDER LITHIO ORGANOCUPRATES (Continued)

* The yield was not specified.

' The ee was not reported.

 $d OR^* = (-)$ -menthyl.

' The configuration is at sulfur.

¹ The product was obtained by hydrolysis of the primary product.

* The product was obtained by esterification of the crude product with SOCl₂ and then C₂H₃OH.

TABLE IV.	SUBSTITUTION	REACTIONS OF	LOWER-(ORDER	LITHIO	ORGANOCUPRATES	(Continued)
-----------	--------------	--------------	---------	-------	--------	----------------	-------------

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		Refs
HOCH ₂) (CH3)2CuLi (2.5 eq)	1. Ether, -40°, 4.5 h 2. NaIO ₄ , THF, H ₂ O		(55)	795
گ	n-C₄H₂Cu(CN)Li (2 eq)	Ether, -78 to 0°	OH v ^C 4Hg-n	(63)	317
[*] C ₆ H ₅ −<	[C ₆ H ₅ N(CH ₃)CO] ₂ CuLi	Ether, -78 to 25°, 12 h	C ₆ H ₅ N(CH ₃)-		296
,	CH ₃ Cu(CN)Li	Ether, -78 to 0° , 7 h	COCH2CHOHC4A5 C4H3CH(CH3)CH2OH C4H3CHOHC2H5	(52) (81) (18)	317
CH ₃ O ₂ C	(CH ₃) ₂ CuLi	Ether, 20°, 18 h	HO CH ₃ O ₂ C	(85)	796
n-C ₆ H ₁₃	n-C ₇ H ₁₅ TBDMSO Si(CH ₃) ₃	-	OH OTBDMS n-C ₆ H ₁₃ C ₇ H ₁₅ -n	(74)	735
Ç	n-C₄H₅Cu(CN)Li	-	n-C ₃ H ₁₁ OH	(81)	318
Br	° (n-C₄H₅)2CuLi (4 eq)	Ether, -78°, 2 h		(89)	797
TBDMSOCH2 C6H3CH2O HO	(CH ₃) ₂ CuLi	Ether, 0-20°, 18 h	TBDMSOCH2 C6H5CH20 HO HO OH	(97)	798
6	7		\sim		
	n-CaH9Cu(CN)Li			(84)	311
C ₁₀ C ₁₀	n-C,H,Cu(CN)Li CH,Cu(CN)Li	— Ether, -78 to 0°, 7 h	$\int_{C_{5}H_{11}-n}^{0}$ n-C_{8}H_{17}CHOHC_{2}H_{5}	(84) (71)	311

TABLE IV.	SUBSTITUTION REACTIONS OF LOWER-ORDER LITHIO ORGANOCUPRATES (Continued)

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
	CH3 Cu(CN)Li	Ether, -60 to -40° , 1.5 h	THPO CO	(61) 800
	i (C ₆ H ₅) ₂ CuLi	Ether, THF, -45 to 25°	HO C ₆ H ₅	(73) 801
1-C4H9	(CH ₃) ₂ CuLi (excess)	THF, reflux 48 h	OH I-C4H9	(36) 802
	c	. Reactions of Allylic Substrates		
[−] [−] [−] [−] [−] [−] [−]		THF, HMPA, CO, 50 kg/cm ² , 25°, 12 h	o∕_Nco∕~	(93) 297
	[C ₆ H ₅ (CH ₃)NCO] ₂ CuLi	Ether, 25°, 1 h	C ₆ H ₅ N(CH ₃)CO	(88) 296
	$[C_6H_5SeCH(C_6H_{13}-n)]_2CuLi$	THF, DMS, -100°, 30 min	C ₆ H ₅ SeCH(C ₆ H ₁₃ -n)	(78) 803
	$\bigcup_{NC_4H_{9}-t}^{N} Cu(C \equiv CC_3H_{7}-n)Li$	Ether, THF, -20°, 4 h	NC4H9-1	(87) 804
OSi(CH ₃) ₃	(C ₆ H ₅) ₂ CuLi	Ether, 0°, 5.5 h	OSi(CH ₃) ₃ C ₆ H ₅	(78) 8
	(n-C4H9)2CuLi	Ether, -40° , 30 min	n-C4H9	(74) 8
N(Tf)2	(C ₆ H ₅) ₂ CuLi (5 eq)	Ether, -25°, 30 min	C ₆ H ₅	(73) 84
C_{4} $ \bigcup_{\substack{S\\ S\\ O_{2}}}^{Br} $	(CH ₃) ₂ CuLi	THF, -78°, 2 h		(87) 80
	(C ₆ H ₅) ₂ CuLi	THF, -78°, 2 h	C ₆ H ₅	(64) 80
	r (C ₆ H ₅) ₂ CuLi	—		(71) 81
SO ₂ C ₆ H ₅	H_3 $n-C_6H_{13}$ Cu(CN)Li (BF ₃ -Et ₂ O)	Ether, THF, -15°, 1.5 h	02 SO2C6H5 n-C6H13	(78) 80
	(CH3)3 n-C4H9Cu(CN)Li 9C6H5	Ether, -30°, 20 min	HO n-C ₄ H ₉ S(O) ₂ C ₆ H ₅	(70) 80
C ₅ OSi(CH ₃) ₃ Br	(C ₆ H ₅) ₂ CuLi	Ether, 0–25°, 7 h	OSi(CH ₃) ₃	(71) 80

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
SC ₆ H ₅ O ₂ CCH ₃	()2CuLi	THF, -78°	SC ₆ H ₅ (76)	811
TBDPSO	S(O) ₂ C ₆ H ₅ (//) ₂ CuLi r(CH ₃) ₃ BF ₄ ⁻	THF, -78°, 20 min	⁵ (O) ₂ C ₆ H ₅ (78)	812
	()2CuLi	THF, -78°, 20 min	S(0) ₂ C ₆ H ₅ (91)	812
CN OP(0)(OC ₂ H ₅) ₂	[C ₆ H ₅ (CH ₂) ₂] ₂ CuLi	THF, -78°, 30 min	r-C ₄ H ₅ (C ₆ H ₅) ₂ SiO C ₆ H ₅ (CH ₂) ₃ CN F-7 15:85 (96)	813
Ś	[(C ₂ H ₅ O) ₂ CH] ₂ CuLi	THF, -40°, 5-6 h	$OH \qquad CH(OC_2H_5)_2 + (87)$	330
Ś	[(C2H3O)2CH] 2CuLi	Ether, - 40°, 5-6 h	$ \begin{array}{c} $	330
	CH ₃ Cu(CN)Li	Ether, -78°		331
OCH ₂ C	OCH3 CH3Cu(CN)Li	÷.	OCH2OCH3 ()	872
	C ₆ H ₅ Cu(CN)Li	Ether, -70 to 20°	$C_2H_5 = C = C_6H_5 $ ()	828
C ₆ H ₅	(CH3)2CuLi	THF, ether, -80 to 0° , 4 h		815, 816
BDMSO CH-SO	CO ₂ CH ₃ C ₂ H ₅ Cu(CN)Li	THF, BF3 [,] Et ₂ O, -78°, 30 min	TBDMS0 C02CH3 (92)	817

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		Refs
OR			OR		
R = TMS	Cu(CN)Li	Ether, -78 to 25° , 5 h	ОН	(80)	332
	(CH3)Cu(CN)Li	Ether, - 78 to 25°, 5 h	OH	(75)	332
$R = P(O)(OC_2H_5)_2$	(CH ₃) ₂ CuLi (2.5 eq)	THF, -23°, 2 h	OR	(83)	333
R = Li OLi	(CH ₃) ₂ CuLi (2.5 eq)	THF, -23° , 2 h, then TsOH, C ₆ H ₆	Å.	(65)	333
Q	(C,H ₃) ₂ CuLi	THF, -23° , 2 h, then TsOH, C ₆ H ₆	C ₆ H ₅	(40)	333
√√√02CCH3	(C2H50 0 2 CuLi	THF, -55 to 25°	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(60)	594
SeC ₆ H ₅	(CH ₃) ₂ CuLi	Ether, 0-25°	∽~~~~O₂CC¢H₂	()	819
SC ₆ H ₅	(C ₆ H ₅) ₂ CuLi	THF, 0°	SC ₆ H ₅	(77)	811
Br	(n-C4H9)2CuLi	Ether, DMS, -78°, 2.5 h	$C_{4}H_{9}-n + O_{-C_{4}H_{1}}$	(51) ₉ -n	328, 329
o-fo Br	(n-C₄H₀)2CuLi	Ether, DMS, -78°, 4 h		(40)	328, 329
Å,	(n-C4H9)2CuLi	7	93:7 HO ₂ C	(75)	329
OTBDMS	(n-C4H4)2CuLi	Ether, DMS, -78 to -20°, 6 h, then HF, CH ₃ CN	$\underbrace{\underbrace{C_{4}H_{9}-n}}_{40:60} + \underbrace{\underbrace{C_{4}H_{9}-n}}_{C_{4}H_{9}-n} = 0$	(90)	329
			1.105 (1.1.1)		

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)	Refs
CO2CH3	(n-C4H9)2CuLi	Ether, DMS, -78°, 3.5 h	$ \begin{array}{c} $	328, 329
\bigcirc	[(C ₂ H ₅ O) ₂ CH] ₂ CuLi	Ether, -40° , 5–6 h	CH(OC ₂ H ₅) ₂ +	330
			(98)	
QSi(CH₃)₃	(s-C,H ₉)Cu(CN)Li	Ether, -78°, 1-3 h	$s-C_4H_9$ (-) OSi(CH_2)	331
\sim	Cu(CN)Li	Ether, - 78 to 25°, 5 h	(80)	332
	CH₃Cu(CN)Li	Ether, -78 to 25°, 5 h	(95)	332
	(CH3)2CuLi	THF, -23° , 2 h, then TsOH, C ₆ H ₆	(80)) 333
	(C ₆ H ₅) ₂ CuLi	THF, -23°, 2 h, then 3 N HCl, C ₂ H ₅ OH	C ₆ H ₅ (72)	333
OLI O2CC6H5	(C ₆ H ₅)2CuLi	THF, -23°, 2 h	C_6H_5 $+$ (65)	333
t X	CH₃Cu(CN)Li	1. — 2. кон	98:2 98:2 (-)	820
(C ₂ H ₅) ₂ C → SC ₆ H CH ₂ B ₁	ls (CH3)2CuLi r	Ether, THF, DMS, -78 to 20°, 10 h	$(C_2H_5)_2C \Rightarrow C_2H_5 (61)$	821
St.	<i>i</i> -C ₆ H ₁₃ Cu(CN)Li	Ether, -20 to 0°	HO ₂ C (95)	823

The best in the second of both bit	TABLE IV.	SUBSTITUTION REACTIONS OF	LOWER-ORDER LI	TTHIO ORGANOCUPRATES	Continued
--	-----------	---------------------------	----------------	----------------------	-----------

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		Refs
C ₆ H ₅ CH ₂ O	(CH3)2CuLi CH2OH	Ether, THF, 0°	C ₆ H ₅ CH ₂ O HO C ₆ H ₅ CH ₂ O HO C ₆ H ₅ CH ₂ O	(88)	823
C ₆ H ₅ CH ₂ O	(CH ₃) ₂ CuLi CH ₂ OH	Ether, THF, 0°	12:88 OH C ₆ H ₅ CH ₂ O HO C ₆ H ₅ CH ₂ O HO C ₆ H ₅ CH ₂ O HO C ₆ H ₅ CH ₂ O	(72)	823
O2CN(Li) i-C3H7)C ₆ H ₅ CuI (1 eq), P(C ₆ H ₅) ₃ (2 eq), C ₆ H ₅ (CH ₃) ₂ SiLi (1 eq)	Ether, THF, 0°, 2 h	94:6 Si(CH ₃) ₂ C ₆ H ₅	(87)	824
i-C ₃ H ₇	ц)С ₆ Н ₅ "	Ether, THF, 0°, 2 h	$i-C_3H_7$ $i-C_3H_7$ E:Z 7:1 $Si(CH_3)_2C_6H_5$ $i-C_3H_7$	(87)	824
(CH3)3Si C4H3	$Li \qquad O \qquad Li \\ MPTP^{*} (1 eq)$	THF, DMF, -70 to 25°, 8 h, then 2 N HCl, 25°	$C_{0} C_{0} C_{0} C_{0} C_{0} H_{9} - n$	(49)	825
n-C5H11	CI $(\sim \sim \sim)_2 CuLi$ 25:75 E:Z	Ether, DMS, -78°, 5 min	25:75 E,E:Z,E	(95)	826
S(O) ₂ C ₆ H ₅	O (CH ₃) ₂ CuLi	Ether, -20°, 30 min	93:7 E:Z 0	(74)	827
CH ₃ CO ₂	[C ₆ H ₅ (CH ₃) ₂ Si] ₂ CuLi	THF, 25°, 12 h	Si(CH ₃) ₂ C ₆ H ₅	(87)	325a
CH ₃ CO ₂	[C ₆ H ₅ (CH ₃) ₂ Si] ₂ CuLi	THF, 25°, 12 h	Si(CH ₃) ₂ C ₆ H ₅	(93)	325a
CH ₂	n-C,H9Cu(CN)Li	Ether, - 78°, 1 h	C5H11-n OH	(85)	828
	Cu(CN)Li	Ether, -78°, 1 h	бон	(75)	828

TABLE IV. SUBSTITUTION REACTIONS OF LOWER-ORDER LITHIO ORGANOCUPRATES (Continued)

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		Refs
CH ₂	(C₅H₅)Cu(CN)Li	Ether, -78°, 1 h	Сон	(85)	828
	Cu(CN)Li	Ether, -78°, 1 h	C ₆ H ₅	(75)	828
OSi(CH ₃) ₃	(n-C4H2)Cu(CN)Li	Ether, - 78 to 25°, 5 h	n-C ₄ H ₉ . OSi(CH ₃) ₃	(70)	332
OSI(CH ₂) ₃	(n-C4H2)Cu(CN)Li	Ether, - 78 to 25°, 5 h	n-C4H9 OSi(CH3)3 OH	(85)	828
OSi(CH ₃) ₃	(n-C₄H9)Cu(CN)Li	Ether, -78 to 25°, 5 h	n-C4H9 OSi(CH3)3	(74)	332
CH ₃ CO(CH ₂)2	02 (n-C4H9)2CuLi	Ether, - 15 to 25°, 15 h	CH3CO(CH2)2 C5H11-7	(60)	829
CH(C) SO ₂ C ₆ H ₅ H	02CH3)2 (n-C4H9)2CuLi	Ether, -60 to -10° , 1 h	$E:Z 83:17$ $CH(CO_2CH_3)_2$ $C_4H_{9}-n$ OH	(57)	830
H Sozo	(C ₆ H ₅) ₂ CuLi GH5	THF, DMS, -78°, 20 min	SO ₂ C ₆ H ₅	(79)	831
	ls (n-C₄H₃)₂CuLi (10 eq) C₄Hs	Ether, HMPT, -35°, 2 h	CH ₂ CO ₂ C ₂ H ₅	(95)	832
	(C ₆ H ₅) ₂ CuLi (1.5 eq)	Ether, 0°, 7 h	C ₆ H ₅	(70)	327
CH3CO2	(CH ₃) ₂ CuLi	Ether, 0°, 5 h	3	(90)	327
CH ₂	CH3Cu(CN)Li	Ether, -78°, 1 h	C ₂ H ₅ OH	(90)	828

TABLE IV. SUBSTITUTION REACTIONS OF LOWER-ORDER LITHIO ORGANOCUPRATES (Continued)
Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
THPO(CH ₂)4	[~] O ₂ CCH ₃ (n-C ₃ H ₁₁) ₂ CuLi	1. — 2. TsOH, CH₃OH	HO(CH ₂) ₄ 98:2 E:Z	()	833
C ₆ H ₅ BH	F4 (CH3)2CuLi	Ether, -78°, 1 h, 0°, 6 h	C ₄ H ₅ CH(CH ₃)- CH ₂ CO ₂ CH ₂ CH ₂ OH	(92)	834
CH2=C=0 n-C3H11	Li CH ₃ Li, CuI, MPTP ^a (1 eq)	THF, -78 to 20°, 3 h	$CH_2 = \underbrace{C_3H_{11}}_{E:Z} C_5H_{11} - n$	(55)	835
CH3CO2	$\begin{pmatrix} 0 \\ (n-C_4H_9)_2CuLi (excess) \end{pmatrix}$	Ether, 0°, 2 h	(n-C ₅ H ₁₁) ₂ CH	(40)	836
CH ₃ CO ₂ C=C	ССН3 (СН3)2CuLi 7 ⁻ⁿ	THF, -30 to 20°, 1.5 h	C ₃ H ₇ -n	(65)	837
C ₁₀ SC ₆ H ₅ O ₂ CCH ₃ C ₄ H ₉ -t	(C ₆ H ₃)₂CuLi	ТН Г, 0°	$C_{4H_{9}-t}$	(71)	811
S(O) ₂ C ₆ H ₅	(n-C ₄ H ₉) ₂ CuLi C ₄ H ₅	Ether, -20°, 30 min	n-C4H9	C ₆ H ₅ (73)	827
C OLi	(CH3)2CuLi, CH3Li, MPTP	THF, ether, DMF, -78 to 25°, 3 h		(90)	838
	(CH ₃) ₂ CuLi	Ether, 0°, 30 min	HO C ₃ H ₇ -i	(86)	573
c _n	OH (CH3)2CuLi	Ether, THF, -15°, 16 h	И СОН	(81)	839
L~X	——ОН (СН3)2СиLi	Ether, THF, -23°	syn:anti 16:84	(75)	839
C ₁₃ Ts-N-C CH ₂	(TMSCH ₂) ₂ CuLi	Ether, -78 to 0°, 4.5 h		(100)	840

TABLE IV. SUBSTITUTION REACTIONS OF LOWER-ORDER LITHIO ORGANOCUPRATES (Continued)

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)	Refs	
HCEC CI	(n-C4H9)2CuLi (2 eq)	Ether, 0°, 30 min	$n - C_4 H_9 CH = C = (90)$) 28	
	(CH3)2CuLi (2 eq)	Ether, 0°, 30 min	CH ₃ CH=C=(70)) 28	
C ₁₂			$CH_2 = C = $ (20))	
До ₂ ссн.	3 (CH ₃) ₂ CuLi	Ether, -10 to 20°	+ (78) 844	
н			A (18)	
C₁7 O₂OCH₃ C₄H₅ C≷CC	(CH3)2CuLi GH5	Ether, 20°, 12 h	$C_{\theta}H_{5}$ $C_{\theta}H_{5}$ $C_{\theta}H_{5}$ $C_{\theta}H_{5}$ I (75)) 845	
	CH3Cu(CN)Li	Ether, 20°, 12 h	$ \begin{array}{c} \mathbf{I} + \\ \mathbf{C}_{6}\mathbf{H}_{5} \\ 54:46 \end{array} $ (96)	5) 845	
C ₂₀ HC ^{-C} C ⁻ H HC ^{-C} O ₂ CC ₆ H ₅	H ₁₇ (CH3)2CuLi	Ether, 0-25°, 5 h	$\bigcup_{\substack{\mathbf{C}\\\mathbf{C}\\\mathbf{C}\\\mathbf{C}}} \mathbf{C}_{\mathbf{C}}^{\mathbf{C}_{\mathbf{g}}\mathbf{H}_{17}} $ (85)) 846	
		E. Miscellaneous Couplings			
C ₀ O ₂	C4H9-1 Cu(C4H9-1)Li	THF, -78°	CaHget CaHget (18	8) 847	
	(TMS)2CuLi	Ether, - 78°	(30 TMS)2)) 848	
	(CHBr=CTMS) ₂ CuLi	Ether pentane, -83 to 20°, 45 min	Br TMS TMS Br (62	2) 849	

TABLE IV.	SUBSTITUTION REACTIONS OF LOWER-ORDER LITHIO ORGANOCUPRATES (Continued)

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
C₀H₀(CO)₃Mn⁺	(CH3)2CuLi (CH3)2CuLi	Ether, 0° Ether, -78°	C ₆ H ₆ (CO) ₂ MnCH ₃ C ₆ H ₆ Mn(CO) ₂ COCH ₃	(42) (45)	307 307
C0 Cp=Fe (C ₆ H ₅) ₃ P 0 0	H5 ^{(n-C4H9)2CuLi}	-	n-C4H9 S-C6H5	(96)	850
(SeCN) ₂	Cu(CN)Li TMS	THF, -78 to 20°, 1 h	TMS	(70)	851
(CH ₃) ₂ NOP(O)- (C ₆ H ₅) ₂	(n-C ₆ H ₁₃ C≡C) 2CuLi	Ether	n-C ₆ H ₁₃ C≡CN(CH ₃) ₂	(67)	295
(3 64)	(i-C ₆ H ₁₃ C=C) ₂ CuLi [(CH ₃) ₃ SiC≡C] ₂ CuLi	Ether Ether	<i>i</i> -C ₆ H ₁₃ C≡CN(CH ₃) ₂ (CH ₃) ₃ SiC≡CN(CH ₃) ₂	(75) (67)	295 295
C ₆ H ₅ Cl ^P -OR [*]	o-CH₃OC₅H₄Cu(CN)Li	1. Ether, THF 2. KCN 3. CH ₃ Li	C_6H_5 P-CH ₃ o-CH ₃ OC ₆ H ₄ (ee 68%)	(60) ^c	294
	p-CH₃OC₅H₄Cu(CN)Li	 Ether, THF KCN CH₃Li 	P-CH ₃ OC ₆ H ₄ (ee 77%)	(40) ^c	294
9-Borabicyclo- [3.3.1]nonane (9-BBN)	n-C4H9Cu(SC4H9)Li	 1. THF, −80 to 25° 2. H₂O₂, NaOH, 60° 	(ес 17%) n-С ₄ Н ₉ ОН	(86)	852
CH-CI DEOVOC-H-					
	2 (<i>n</i> -C ₄ H ₉) ₂ CuLi	THF, ether, -90 to -20°	$n-C_4H_9CH(CH_3)P(O)(OC_2H_3)_2$	(81)	305
	s-C4H9Cu(OC4H9-t)Li	THF, ether, -90 to -35°	s-C4H9CH(CH3)P(O)(OC2H5)2	(62)	305
CpFe ⁺ (CO) ₂ BF ₄ ⁻ CH ₃ O	(CH ₃) ₂ CuLi	Ether, CH_2Cl_2 , -78°	CpFe*(CO) ₂ (CH ₃) ₂ COCH ₃	(50)	308
OC Mot OC	$\left(n-C_5H_{11}\right)^2$ CuLi	THF, -78°	BF4 OC OC	()	853
5 C4H9C(Li)P(O)(OC2H3)2 Cl	2 (C ₆ H ₅)2CuLi	THF, ether, -90 to -13°	<i>n</i> -C ₄ H ₉ CH(C ₆ H ₅)P(O)(OC ₂ H ₅) ₂	(77)	305
CICO ₂ C ₂ H ₅	(THF, -78 to 0°, 45 min	$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	(80)	843
CH3COCH2CH(C6H3)	$(CH_3)_2CuLi$ $CH_2 \xrightarrow{S}$	1. Ether, DMS, −78°, 2 h 2. H ₂ S (g) 3. (CH ₃ CO) ₂ O, C ₅ H ₅ N	СН ₃ СОСН ₂ СН(С ₆ Н ₅)СН ₂ СНСОСН ₃ S(CH ₂) ₃ SC	3 (58) COCH3	855

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		Refs
C,					
C ₆ H ₅ NO ₂	()2CuLi	Ether, -78°	A.B.	(45)	856
(OC)3Fe +	2CuLi	THF, -78°, 2 min	(OC) ₃ Fe	(63)	857
(OC)3Fe +	(CH3)2CuLi	Ether, 0°	(OC) ₃ Fe	(63)	858
C, Br Si(C4H9	(<i>n</i> -C ₄ H ₂)₂CuLi -t)₂ (4 eq)	1. THF −48° 2. C ₆ H ₅ COCI	Si(C4H9-1)2	(57)	859
tr O	(n-C4H9)2CuLi	1. Ether, -78 to 20°, 40 min 2. CH₃COCl, 20°, 16 h		(67)	860
tr N	(CH3)2CuLi (3 eq)	Ether, - 78 to 25°	of N	(66)	30-
	(<i>n</i> -C ₄ H ₉) ₂ CuLi (3 eq)	1. Ether, -78 to 25° 2. Br (10 eq)	O N Callon	(88)	30
	(C ₆ H ₅) ₂ CuLi (3 eq)	 Ether, -78 to 25° C₆H₅COCI (10 eq) 		(66)	304
C,H,NHCH,	(n-C4H9)2CuLi	Ether, -20° , 2 h, then O ₂ , -78°	C ₆ H ₅ C ₆ H ₅ N(CH ₃)C ₄ H ₉ - <i>n</i>	(57)	303
	(5 eq) (C ₆ H ₅) ₂ CuLi (5 eq)	THF, reflux, 6 h, then O_2 , -20°	(C ₆ H ₅) ₂ NCH ₃	(72)	303
CHO	(5 cq) [(CH ₃) ₂ CuLi + CH ₃ Li] (5 eq)	Ether, -78 to 0°, 2 h, then CH ₃ I, O ₂	снонсн ₃	(86)	300
HgCl	[(CH3)2CuLi + CH3Li] (5 eq)	Ether -78 to 0°, 2 h, then CH ₃ I, O ₂		(82)	306

TABLE IV.	SUBSTITUTION REACTIONS OF	LOWER-ORDER LITHIO	ORGANOCUPRATES (Continued)	
-----------	---------------------------	--------------------	----------------------------	--

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		
C ₆ H ₅ CH ₂ N(Tf) ₂	(CH ₃) ₂ CuLi (5 eq)	Ether, -25°, 2 h -3 d	C ₆ H ₅ C ₂ H ₅	(60–70)	806
CON(C ₂ H ₅	0/2 OCH ₃ NHCu(CN)Li (5 eq)	THF, -10° , 2 h, then O_2 , -78°		(50)	302
OCH3 CON(C2H5	3)2 C ₆ H3NHCu(CN)Li (5 eq)	THF, -10° , 2 h, then O ₂ , -78°	OCH3 CON(C2H5)2 NHC6H5	(63)	302
CON(C ₂ H ₅)	$h_2 \qquad N-Cu(CN)Li$ (5 eq)	1. THF, -10°, 2 h 2. O ₂ , -78°	OCH3 CON(C2H3)2	(33)	302
C ₃ NH ₂ COCH ₃	(1-C4H3)2CuLi (5 eq)	1. THF, −20°, 2 h 2. O ₂ , −20°	NHC4H9-1 COCH3	(32)	303
NH(CH ₂) ₂ OH	(n-C4H3)2CuLi (5 eq)	1. Ether, -20° , 2 h 2. O_2 , -20°	N(C4H9-n)(CH2)2OH	(37)	303
(C ₆ H ₅) ₃ P(CO) ₂ Fe	(CH3)2CuLi PF6	Ether, 0°	(C ₆ H ₅) ₃ P(CO) ₂ Fe	(83)	861
CH ₃ O) ₃ P C ₆ H ₅	(C6H3)2CuLi F4	THF	(CH ₃ O) ₃ P-Mo (CH ₃ O) ₃ P Br	()	862
C,	[(CH3)2CuLi + CH3Li] (5 eq)	1. Ether, -78 to 0°, 2 h 2. CH ₃ I, O ₂	\prec	(75)	306
C_{10} $n-C_{10}H_{21}NH_2$	(t-C4H4)2CuLi (5 eq)	1. THF, -20°, 2 h 2. O ₂ , -20°	$n-C_{10}H_{21}NHC_4H_9-t$	(23)	303
NH ₂	(t-C ₄ H ₉) <u>2</u> CuLi (5 eq)	1. THF, -20° , 2 h 2. O_2 , -20°	NHC4H9-r	(35)	303
C ₆ H ₅	(CH ₃) ₂ CuLi	1. Ether, -23° , 30 min 2. t -C ₄ H ₉ Br, -78 to 20°	CH3CO C6H5 O	(26)	863
C_{11} $n-C_{7}H_{15}NHC_{4}H_{9}-n$	(CsHs)2CuLi (5 eq)	1. Ether, -37°, 6 h 2. O ₂ , -78°	n-C7H15N(C6H5)C4H9-n	(64)	303

Organocuprate	Conditions	and Yield(s) (%)	_	Refs
C ₆ H ₅ N(CH ₃)Cu(CN)Li ² (5 eq)	THF, -10° , 2 h, then O_2 , -78°	CON(C ₂ H ₅) ₂ N(CH ₃)C ₆ H ₅	(61)	302
(n-C4H9)2CuLi	Ether, -20° , 2 h, then O_2 , -78°	$(C_{6}H_{11})_{2}NC_{4}H_{9}-n$	(38)	303
(5 eq) (C₄H₃)₂CuLi (5 eq)	Ether, -37° , 6 h, then O_2 , -78°	(C ₆ H ₅) ₃ N	(94)	303
(CH3)2CuLi	 Ether, THF, -78°, 4 h KPF₆, H₂O, 0° 	CH ₃ St N CH ₃ PF ₆	(16)	864
F. Reaction	ons with Carbonyl-Containing Substrates			
[C ₂ H ₅ (CH ₃)NCO] ₂ CuLi (C ₂ H ₅)CuLi	Ether, 1 h Ether, THF, -78 to -40° , 1.5 h	C ₆ H ₅ (CH ₃)NCOCOCH ₃ (C ₂ H ₅ O) ₂ P(O)CH(SC ₆ H ₅)COC ₂ H ₅ ((72) 100)	296 865
(n-C4H9)2CuLi (C4H9)2CuLi	Ether, 0°, 1 h Ether, 0°, 1 h	(<i>n</i> -C ₄ H ₆) ₂ C(SH)C ₂ H ₅ (87- (C ₆ H ₅) ₂ C(SH)C ₂ H ₅ (44-	-93) -97)	164 164
(C2H3)2CuLi [(C2H3)3P(O)CH(CH3)]2CuLi	Ether, -70°, 5 min	Br(CH ₂) ₃ COC ₂ H ₅ (C ₅ H ₅) ₂ P(O)CH(CH ₃)- CO(CH ₂) ₃ CO ₂ CH ₃	(88) (60)	28. 86
(n-C4H9)2CuLi	THF, 0 to 25°, 2 h	$C_6H_5 \rightarrow SH = C_4H_9-n$	(93)	310
(C ₆ H ₅) ₂ CuLi	THF, 0 to 25°, 2 h	C ₆ H ₅ SH SH C ₆ H ₅	(75)	31
(t-C4H9)2CuLi	THF, 0 to 25°, 2 h	C ₆ H ₅ K	(76)	31
(t-C4H9)(CH3SOCH2)CuLi	THF, -78°, 1 h	COC4H9-1	(78)	27
-1 (n-C,H ₉)2CuLi 9-1	THF, -55°, 1 h	NH C4H9-1 H C4H9-n CO2C4H9-1	(72)	86
(CH3)2CuLi	THF, 0 to 25°, 2 h	C6H5 SH	(96)	310
(n-C4H9)2CuLi	Ether, O_2 , -78 to 25° , 3 h	t-C4H9CO2C4H9-n	(57)	315
(n-C ₄ H ₉) ₂ CuLi	Ether, -78 to 25°, 3 h	t-C4H9COC4H9-n	(70)	315
	Crganocuprate C, H ₂ N(CH ₃)Cu(CN)Li (5 eq) (C,H ₃) ₂ CuLi (5 eq) (CH ₃) ₂ CuLi (CH ₃) ₂ CuLi (C,H ₃ (CH ₃)NCO] ₂ CuLi (C,H ₃)CuLi (n-C,H ₃) ₂ CuLi (n-C,H ₃) ₂ CuLi (C,H ₃) ₂ CuLi (n-C,H ₃) ₂ CuLi (n-C,H ₃) ₂ CuLi (C,H ₃) ₂ CuLi	Organocuprate Conditions 2. C,H,N(CH,)Cu(CN)Li THF, -10°, 2 h, then O ₂ , -78° (n-C,H ₂),CuLi Ether, -20°, 2 h, then O ₂ , -78° (C,H ₂),CuLi Ether, -37°, 6 h, then O ₂ , -78° (CH ₂),CuLi I. Ether, THF, -78°, 4 h (CH ₂),CuLi 1. Ether, THF, -78°, 4 h (CH ₂),CuLi I. Ether, THF, -78°, 4 h <i>K</i> Reactions with Carbonyl-Containing Substrates [C,H ₄),CuLi Ether, 1 h (C,H ₂),CuLi Ether, 0°, 1 h (C,H ₃),CuLi Ether, 0°, 1 h (r-C,H ₃),CuLi Ether, -70°, 5 min (C,H ₄),CuLi Ether, 0°, 1 h (C,H ₃),CuLi THF, 0 to 25°, 2 h (r-C,H ₃),CuLi THF, 0 to 25°, 2 h (r-C,H ₃),CuLi THF, -78°, 1 h (r-C,H ₃),CuLi THF, 0 to 25°, 2 h (r-C,H ₃),CuLi THF, 0 to 25°, 2 h (r-C,H ₃),CuLi THF, 0 to 25°, 2 h (r+C,H ₃),CuLi THF, 0 to 25°, 3 h (UpganceConductorsand Their(s) (**) $_{1}$ CH, N(CH,)Cu(CN)LiTHF, -10°, 2 h, then O_{p} , -78° \bigcup_{i} CON(C ₂ H ₂), N(CH ₂)CuLi $(r, C, H_{i})_{i}$ CuLiEther, -20°, 2 h, then O_{p} , -78° $(C, H_{i})_{i}$ N(CH ₂)C ₂ H ₂ N(CH ₂)CuLi $(r, C, H_{i})_{i}$ CuLiEther, -20°, 2 h, then O_{p} , -78° $(C, H_{i})_{i}$ N(CH ₂)C ₄ H ₂ $(C, H_{i})_{i}$ CuLiEther, -20°, 2 h, then O_{p} , -78° $(C, H_{i})_{i}$ N(CH ₂)C ₄ H ₂ $(C, H_{i})_{i}$ CuLiEther, 776°, 4 h \bigcup_{i} C(H ₂)_{i}N $(C, H_{i})_{i}$ CuLi1. Ether, THF, -78°, 4 h \bigcup_{i} C(H ₂)_{i}N(COCCCH, CH ₂) $(C, H_{i})_{i}$ CuLiEther, 1 h $(C, H_{i})_{i}$ CuCi $(C, H_{i})_{i}$ CuLiEther, 71 h $(C, H_{i})_{i}$ CuCi(CH)_{i}CuCi(CH, C(H ₂)_{i})COCH, CuCi, H, (CH)_{i}CuLi $(r, C, H_{i})_{i}$ CuLiEther, -70°, 5 min $Br(CH_{i})_{i}$ COCH, CuC(H)_{i})COCH, CuC(H)_{i},COCH, CuC(H)_{i},COCH, CuC(H)_{i})COCH, CuC(H)_{i})COCH, CuC(H)_{i})COCH, CuC(H)_{i})COCH, CuC(H)_{i})COCH, CuC(H)_{i})COCH, CuC(H)_{i})COCH, CuC(H)_{i})COCH, CuC(H)_{i})COCH, CuC(H)_{i})COCH, CuC(H)_{i})COCH, CuC(H)_{i})COCH, CuC(H)_{i})COCH, CuC(H)_{i})COCH, CuC(H)_{i})COCH, CuCH)_{i}COCH, CuC(H)_{i})COCH, CuC(H)_{i})COCH, CuC(H)_{i})COCH, CuC(H)_{i})COCH, CuC(H)_{i})COCH, CuC(H)_{i})COCH, CuC(H)_{i})COCH, CuC(H)_{i})COCH, CuC(H)_{i})CuLi $(r, C, H_{i})_{i}CuLi$ THF, 0 to 25°, 2 h $C_{i}H_{i} + S_{i} + S_{i$	Organocuprate Condutions and THE(3) (57) C,H,N(CH,)Cu(CN)Li THF, -10°, 2 h, then O_{2} , -78° $\int_{G} G_{2}(H_{2})$

TABLE IV. SUBSTITUTION REACTIONS OF LOWER-ORDER LITHIO ORGANOCUPRATES (Continued)

Substrate		Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		Refs
C ₇	C&H\$COCI	[(C,H,)2NCO]2CuLi t-C,H,(C,H,S)CuLi	THF, HMPA, CO, 80°, 30 min THF, 60°, 20 min	(CH3H3)2NCOCOC6H3 C6H3COC4H9-t	(61) (87)	297 309
	C,H,COCI	$N \rightarrow OCH_3$	THF, -70°	C ₆ H ₅ N OCH ₃ COC ₆ H ₅	(30)	868
		CH ₃ O (2 CaLi	THF, DMS, -60°, 30 min	CH ₃ O CH ₃ O CCH ₃ COC ₆ H ₅	(65)	310
	n-C4H9 F	(C ₂ H ₃) ₂ CuLi (C2H ₃) ₂ CuLi	Ether, THF, HMPT, -110 to -70°	CH_3O OCH ₃ $n - C_4H_9$ F $T_3:27 E: Z$	(70)	312
	N SCOC H	(n-C4H9)2CuLi	Ether, O_2 , -78 to 25°, 3 h	C ₆ H ₅ CO ₂ C ₄ H ₉ -n	(99)	315
	C,H,CS,CH,	$(n-C_4H_9)_2CuLi$ $(t-C_4H_9)_2CuLi$ $(t-C_4H_9)_2CuLi$ $(CH_3)_2CuLi$ $(CH_3)_2CuLi$ $CH_3Cu(SCH_3)Li$ (2 eq)	Ether, -78 to 25°, 3 h Ether, O ₂ , -78 to 25°, 2 h Ether, -78 to 25°, 3 h Ether, 0°, 1 h Ether, 0°, 1 h	C ₆ H ₅ COC ₄ H ₉ - <i>n</i> C ₆ H ₅ CO ₂ C ₄ H ₉ - <i>t</i> C ₆ H ₅ COC ₄ H ₉ - <i>t</i> (CH ₃) ₂ C(C ₆ H ₅)SH (CH ₃) ₂ C(C ₆ H ₅)SH	(99) (43) (96) (88) (99)	315 315 315 164 164
		(CH3)2CuLi (3 eq)	Ether, - 78°, 15 min	COCH ₃ COCH ₃ COCH ₃	(55)	869
C,	n-C7H15COSeCH	i3 t-C4H4(SC4H3)CuLi	-78°, 1 h	$n-C_7H_{15}COC_4H_9-t$	(89)	312
	Br	(CD3)2CuLi	Ether, THF, -78°, 30 min	Br COCD3	(78)	870
C ₁₃	(C ₆ H ₅) ₂ C=S	C2H3Cu(SCH3)Li	Ether, 0°, 1 h	C2H3C(C6H3)2SH	(95)	164
		(CH ₃) ₂ CuLi	Ether, -70°, 30 min	CO ₂ CH ₃ CH ₂ COCH ₃	(92)	871
C ₁₈		(CH ₃) ₂ CuLi Br	Ether, - 78°, 15 min	COCH ₃	(74)	872

TABLE IV. SUBSTITUTION REACTIONS OF LOWER-ORDER LITHIO ORGANOCUPRATES (Continued)

* MPTP is $C_6H_3N(CH_3)P^+$ (C_6H_5)₃I⁻. * R* = cinchonyl. * The yield is overall after (1) KCN, (2) CH₃Li, and (3) H₂O₂.

Acetylene Derivative	Organocuprate	Carbometallation Conditions	Adduct	Electrophile	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₂	(— •			Ma			
HC≡CH (2 eq)		Et ₂ O, -20°, 30 min		I ₂	Et ₂ O, -60 to 10°	C ₂ H ₂ (79)	345
	(n-C7H15)2CuLi	•	$\left(n-C_{\gamma}H_{15}\right)$ CuLi		THF, HMPA (2 eq), -30 to 25°, 1 h	n-C ₇ H ₁₅ (98)	346
	(<i>n</i> -C ₄ H ₉) ₂ CuLi		(n-C4H2)2	₩ ^{Br}			346 67)
						(78:22)	
	(C ₂ H ₅) ₂ CuLi		(C2H3 Culi	>=∽₁	THF, HMPA (1 eq), -30 to 20°, 5-12 h	C2H5 (84)	346
		n	(C2H) Cali	С2H3O2C	THF, HMPA (2 eq), P(OC ₂ H ₅) ₃ (1.5 eq), -30 to 20°, 5-12 h	C ₂ H ₂ CO ₂ C, (85)	2 ^{H5} 346
		•	(C2H5)Cali	TMSO (2 eq)	THF, TMEDA, (1.2 eq), -15°, 1 h	C₂H5 C≡C-∕C	он ³⁴⁶
	(n-C ₇ H ₁₅) ₂ CuLi		$\left(n-C_{7}H_{15}\right)_{2}$ CuLi	CI 1 (2 cq)	THF, HMPA (2 eq), P(OC ₂ H ₅) ₃ (1.5 eq), −30 to 20°, 5-12 h	n-C ₇ H ₁₅ (77)	346
	(n-C3H11)2CuLi	"	$\left(n-C_{3}H_{11}\right)$ CuLi)I (2 eq)	Et ₂ O, THF, ZnBr ₂ (1 eq), 5% Pd[P(C ₆ H ₅) ₃], -25 to 10°,	n-C5H11 (74)	347
	(C ₂ H ₅) ₂ CuLi		(C_2H_2) CuLi	n-C ₃ H ₁₁		C ₂ H ₅ C ₅ H ₁₁ . (82)	n 347
			(C2H5)CuLi	⟨ 」 ⊾ı	».	C2H5 ()	348
	(n-C4H4 - CuLi		$\left(n - C_4H_9\right)^{-1}$	ц Снј	THF, HMPA (1 eq), P(OC ₂ H ₅) ₃ (1.5 eq), -30 to 20°, 5-12 h		349
	(THPO(CH ₂) ₈)-CuLi 2	Et ₂ O, DMS, -25°, 30 min	(THPO(CH ₂)	Culi 1. NH4Cl, H2SO4 2. CH3COCl, CH3CO2H	-	CH ₃ CO ₂ (CH ₂)8	350a
		÷		CuLi 2	Et ₂ O, -50 to -10°, 30 min	Co-(CH2)	350a
		. ["]	(c ₂ H ₃ O ⁺ O(CH ₂) ₈) ₂ C	buLi n-C4H9I (2 cq)	THF, HMPT (1 eq), P(OC ₂ H ₅) ₃ (3 eq), 20°, 3-4 h	CH3CO2(CH2)	[▶] 350a ₉ -n
		ц"	(C2H50 0(CH2)8 -)2	Ouli //	1. THF, HMPA (1 eq) 2. H ₂ SO ₄	HO(CH2)	350a
	(n-C4H9)2CuLi	Et ₂ O, -25°, 30 min	(n-C4H2 Cali	CH ₃ SCH ₂ Cl	THF, P(OC ₂ H ₅) ₃ (3 eq), 25°, 4 h	n-C4H2 SCH3 (78)	350b

TABLE V.	CARBOCUPRATION	REACTIONS OF	LOWER ORDER	LITHIO ORGANOCUPRATES

TABLE V.	CARBOCUPRATION REACTIONS OF LOWER ORDER LITHIO ORGANOCUPRATES	(Continued)

Acctylene Derivative	Organocuprate	Carbometallation Conditions	Adduct	Electrophile	Conditions	and Yield(s) (%)	Refs
			(n-C4H9)CuLi	OHCN(CH3)CH2CI	THF, 20°, 3 h	n-C4H2 N(CH3)CH0 (83)	o ^{350b}
	(C ₂ H ₅) ₂ CuLi	Et ₂ O, -30°, 30 min		(2 eq)	 <i>n</i>-C₄H₂C≡CLi Et₂O, -30 to -15°, 2 h 	C ₂ H ₅ OH (82)	873
	(n-C5H11)2CuLi			CO2C2H5	Et ₂ O, -30 to -10°, 2 h	n-C ₅ H ₁₁	873
	(n-C4H9)2CuLi	ė	(n-C4H2 CuLi 2	CO ₂ (excess)	Et ₂ O, HMPA (2 eq), P(OC ₂ H ₅) ₃ (0.01 eq), -40 t -20°	n-C4H2 CO2H (98)	973
		Et ₂ O, 15°, 30 min		CO ₂ (excess)		(83) CO ₂ H	349
	(n-C4H9)2CuLi	Et ₂ O, −25°, 30 min	(n-C4H9)CuLi	i-C3H7CHO	Et_2O , -40 to -1	0° $n - C_4 H_2$ $C_3 H_7 - i$ OH (68)	873
	(C ₂ H ₅) ₂ CuLi				Et ₂ O, -30 to -15°, 1 h	C2H3 CH(CO2CH3)2	873
	(n-C4H9)2CuLi		(n-C4H2) CuLi	HC≡COC ₂ H ₅ (2 eq)	1. THF, -15°, 21 2. 20% HCl	n-C4H9 (75) COCH3	873
	(n-C ₃ H ₁₁) ₂ CuLi		(n-C ₅ H ₁)CuLi	HCECCH(OC ₂ H ₅) ₂	Et_2O , -25° , 2 h	n-C ₅ H ₁ (76) CH(00	873 C ₂ H ₅) ₂
	(n-C7H15)2CuLi		(n-C ₇ H ₁₅) _{CuLi}	$\dot{\bigcirc}$	1. <i>n</i> -C₄H ₉ C≡CLi 2. Et ₂ O, -70 to -10° 1 b	<i>n</i> -C ₇ H ₁₅ (82)	873
	(C ₂ H ₅) ₂ CuLi		(C2H5)CuLi	C2H3 CHO	Et ₂ O, -30 to -15	5° C ₂ H ₅ - CH(CH ₃)CH	IO 873
C ₂ H	50 O(CH ₂)4Cu(SC ₆ H)		Cu(SC ₆ H ₂)Li	HCECCO ₂ C ₂ H ₅	THF, -50 to -20	° СН3СО2(СН2)4	* 350a
	(C2H3)2CuLi		(C ₂ H ₅) _{CaLi}	<i>∽</i> ∕₀	Et ₂ O, -20°, 1 h	C2H5 E:Z 86:14 (82)	OH 127
	[(C ₆ H ₅) ₃ Sn] ₂ CuLi	THF, HMPA (3 eq), -55°, 15 min	((C ₆ H ₅) ₃ Sn CuLi	CH3OD, D2SO4	-	(C ₆ H ₅) ₃ Sn D (~90)	874
	(t-C4H9)2CuLi	Ether, DMS, -40°	(-Calli	C ₆ H ₅ SO ₂	Ether, DMS, -40 1 h	, 1-C4H9 SO2C	6H5 875
	(n-C7H15)2CuLi	Et ₂ O, -30°, 30 min	$(n - C_7 H_{15})$ CuLi	TMSCI	THF, HMPA (1 eq), -30 to 20°, 5 h	n-C ₇ H ₁₅ (80)	346
	(1-C4H9)2CuLi	Et ₂ O, DMS, -40°	(-C.H.)Culi	C ₆ H ₃ SO ₂	Ether, DMS, -40 1 h	•, ^{1-C4H9}	H ₅ 856
HC≡COC ₂ H ₅ (2 eq)	(C ₂ H ₅) ₂ CuLi	THF	C ₂ H ₅ O C ₂ H ₅ CuLi	CH ₃ SCH ₂ CI	THF, 25°, 4 h	C ₂ H ₅ O C ₂ H ₅ (76) SCH ₃	3506
HCECCH(OC ₂ H ₅);	2 (TMSCH2)2CuLi	Et ₂ O, -10°, 6 h	TMSCH2 Cu(CH2TMS) CH(OC2H3)	Li NH4CI, H2O	<u>-</u>	TMS CH(OC ₂ I	222b H ₅) ₂
HCECCH(OC.H.)	2 (C2H3)2CuLi	Et ₂ O, -60°	(C.H.SCH-N(C.H.)	THE 25º 3_4 h	CH(OC ₂ H ₅)	2 225

TABLE V. CARBOCUPRATION REACTIONS OF LOWER ORDER LITHIO ORGANOCUPRATES (Continued)

" The product was obtained after hydrolysis with 5 N HCl.

^b This product was obtained after hydrolysis and acetylation of the initial product.

	Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		Refs
C2						
	CH2=CHS(O)C6H4Cl-p	(n-C4H9)2CuLi	 Ether, -60°, 30 min C₆H₅CHO, 25° 	HO_rCH_S	(67)	881
	CH2=CHN(CH3)NO CH2=CHP(O)(OC2H5)2	(n-C4H9)2CuLi (n-C4H9)2CuLi	0° 1. Ether, -70°	n-C ₆ H ₁₃ N(CH ₃)NO n-C ₅ H ₁₁ CH(CH ₂ CH=CH ₂)-	(88)	388 387
		(n-C4H9)2CuLi	2. CH ₂ =CHCH ₂ Br 1. Ether, -70° 2. C ₆ H ₅ CHO	n-C ₄ H ₉ CHOHC ₉ H ₅	(90)	387
	CH2=CHP+(C6H3)3Br-	(n-C ₄ H ₉) ₂ CuLi (2 eq)	1. THF, HMPA, −50°, 9 h 2. C ₆ H ₅ CHO, 20°, 3 h	n-C ₅ H ₁₁ C ₆ H ₅ H	(80)	882
	HC=CSO2C6H5	(CH ₃) ₂ CuLi	Ether, 0°, 30 min	CH ₃ CH=CHSO ₂ C ₆ H ₅	()	383
	p-CH ₃ C ₆ H ₄ S(O)CH=CH ₂	(1 eq) [TBDMSOCH ₂ C(CH ₃) ₂ CH ₂] ₂ CuLi	Ether, -35°, 2 h	p-CH ₃ C ₆ H ₄ S(O)(CH ₂) ₃ C(CH ₃) ₂ - CH ₂ OTBDMS	(75)	883
	TMSC=CSO2C6H5	(CH ₃) ₂ CuLi	THF, -78°, 1.5 h	TMS SO ₂ C ₆ H ₅	(95)	884
C3						
	CH ₂ =C=CHP- (O)(C ₆ H ₅) ₂	(CH ₃) ₂ CuLi	1. Ether, THF, −23°, 30 min 2. C ₆ H ₅ CH==CHCOC ₆ H ₅	CH. J. CH. COC. H.	(66)	885
	CH2=C=CHSO2	CH ₃ Cu(CN)Li	Ether, THF, -23°, 30 min	CH ₂ =C(CH ₃)CH ₂ SO ₂ C ₆ H ₄ CH ₃ -p	(80)	88
	C ₆ H ₄ CH ₃ -p CH ₇ =C=CHS(O)- C ₆ H ₄ CH ₃ -p	(CH ₃) ₂ CuLi	 THF, ether, -23°, 30 min CH₂=CHCH₂Br, -23°, 30 min 	CH ₂ =C(CH ₃)CH(CH ₂ CH=CH ₂)- S(O)C ₆ H ₄ CH ₃ -p	(70)	887
	HC=CCO2CH3	[(CH ₃) ₂ C=C=CH] ₂ CuLi	Ether, - 10°, 30 min	(CH ₃) ₂ C=C=C ^H CO ₂ CH ₃	(91)	76
		(C_2H_5O) CuLi	THF, -78 to -10°, 5 h	C2H30 CO2CH3	(65)	574
		(CuLi	1. THF, ether, -78°, 1 h 2. 140°	C-CO ₂ CH ₃	(>90)	888
	SO ₂ C ₆ H ₅ SO ₂ C ₆ H ₅	CuLi	-	CH ₂) ₂ CH(SO ₂ C ₆ H ₅) ₂	(83)	642
	HC=CCO ₂ C ₂ H ₃	CH3Cu(C=CC4H9-n)Li	1. Ether, -78° 2. 0, 20°, 5 h	С02С2H5 СH2CH(OH)С6H13-л	(61)	362
C,	CH ₂ =C(CO ₂ CH ₃)- N=CHC ₄ H ₃	(CH ₃) ₂ CuLi	$C_{6}H_{13}$ - <i>n</i> Ether, -15°, 1.5 h	C ₂ H ₃ CH(CO ₂ CH ₃)N=CHC ₅ H ₅	(61)	889
	СН₃СН=СНСНО	(n-C4H9)2CuLi	1. Ether, -75°, 15 min 2. TMSCI, TEA, HMPA	л-С ₄ H ₂ CH H	(77)	890
	(E)-CH ₃ CH= CHCON(CH ₃)Ts	(n-C4H9)2CuLi	Ether, -78°	E:Z 75:25 n-C4H9CH(CH3)CH2CON(CH3)Ts	(74)	652
	(E)-CH3CH=CHCO2C2H3	[C ₆ H ₅ (CH ₃) ₂ Si] ₂ CuLi	1. — 2. CH ₃ I	Si(CH ₃) ₂ C ₆ H ₅ CO ₂ C ₂ H ₅	(82)	891

TABLE VI. CONJUGATE ADDITIONS OF LOWER ORDER LITHIO ORGANOCUPRATES

Substrate	Organocuprate	Conditions	Product(s) and Yield(s) (%)	Refs.
CH2=CHCOCH3	$\binom{n-C_{7}H_{15}C(OTBDMS)=C=CHCu}{ }Li$	1. THF 2. H⁺, H₂O	(E)-n-C ₇ H ₁₅ COCH=CH(CH ₂) ₂ COCH ₃ (96)	892
СН;—С—СНСОС,Н,	(TMSC≡C / (CH ₃) ₂ CuLi	 Ether, -23°, 30 min C₆H₅CH=CHCOC₆H₅, -23°, 30 min 	$C_{6}H_{5}COCH = C(CH_{3})CH_{2}CH(C_{6}H_{5})CH_{2}$ $\downarrow C_{6}H_{5}C = O$ (25)	893
			(25) + CH ₂ =C(CH ₃) C HCOC ₆ H ₅ C H(C ₆ H ₅)CH ₂ COC ₆ H ₅ (25)	
CH3O2CC=CCH2N(TMS)2	CH3(n-C₄H9C≡C)CuLi	 THF, Ether, -50° Br(CH₂)₃COCI KOH 	CH ₃ O ₂ C (65)	894
E:Z 95:5	(n-C4H9)2CuLi	Ether, -40 to 0° , 3 h	л-C ₄ H ₉ CH ₂ SO ₂ (46) E:Z 14:79 NN/(CH-)-	816
CH2—CHCOCH3		THF, $(i-C_3H_7)_2S$, -78 to 20°, 14 h	(85)	357Ь
SC ₆ H ₅	(CH2=CH)2CuLi	Ether, -60°, 2 h	$CH_2=CH$ SC_6H_5 $(-)^{s}$	895
CH ₃ CH=CHCO ₂ C ₂ H ₅	[(CH ₃) ₂ C ₆ H ₃ Si] ₂ CuLi	THF, −23°, 4 h	(CH ₃) ₂ C ₆ H ₅ SiCH(CH ₃)CH ₂ CO ₂ C ₂ H ₅ (81)	575
C ₂ H ₅ ^{2^s} N(CH ₃)C ₆ H ₅	(n-C4H9)2CuLi	Ether, 20°, 24 h	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $	896
ТНРОСН,С=ССОСН,	[(C2H3O)2CH		(C2H5O)2CH	
С,н,С≡ссо,с,н,	[]2 ^{CuLi}		THPOCH2 COCH3 (81) E:Z 66:33 C-H- CO-C-H-) 88
	(2 eq)	1HF, CH ₃ OH, -100 to -78° , 3 h	(CH ₃) ₃ Sn (79)	893
	(CH ₃) ₃ SnCu(SC ₆ H ₅)Li (1.2 eq)	THF, -48°, 4 h	(CH ₃) ₃ Sn CO ₂ C ₂ H ₅ (76)	897 898
CF ₃ CH=CHCOCH ₃ (E)-CH ₃ CH=CHC(=CH ₂) SO ₂ C ₆ H ₅	(n-C₄H9)2CuLi ⊢ (n-C₄H9)2CuLi	Ether, 20°, 1 h Ether, -60 to -10° , 1 h	L:Z 2:98 $n-C_4H_9CH(CF_3)CH_2COCH_3$ (44) $CH_3CH=CH(C_3H_{11}-n)SO_2C_6H_5$ (79)) 899) 830
C ₆ H ₅	(CH ₃) ₂ CuLi	 Ether, 0°, 3.5 h CH₂N₂, ether 	C ₆ H ₅ P(O)(OCH ₃)CH ₂ CH=C(CH ₃) ₂ (65)	900
Сн,о	(CH3)2CuLi	THF, TMSCl (5 eq), -78°, 30 min	CH ₃ O <i>cis:trans</i> 1:74 (61)	901
SC ₆ H ₅	(1-C ₁₀ H ₇) ₂ CuLi	THF, -78°, 1 h	O SC ₆ H ₅ C ₁₀ H ₇ -1 (95)	902
SeC ₆ H ₅	(n-C4H9)2CuLi	Ether, - 20°, 30 min	$ \begin{array}{c} $	903 904
TBDPSOCH2 000	(CH ₃) ₂ CuLi	Ether, -20°, 40 min	(85)	905

TABLE VI.	CONJUGATE	ADDITIONS OF	LOWER	ORDER	LITHIO	ORGANOCUPRATES	(Continued)
-----------	-----------	--------------	-------	-------	--------	----------------	------------	---

TABLE VI. CONJUGATE ADDITIONS OF LOWER ORDER LITHIO ORGANOCUPRATES (Continued)

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
	(CH3)2CuLi	THF, -60 to -10°, 2-3 h	٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩	929
OC2H3	(CH ₃) ₂ CuLi	Ether, -78°, 1 h	0 CH2OC(C ₆ H ₅) ₃ 0 C ₂ H ₅ (84)	923
C2H5 000	(CH ₃) ₂ CuLi	-	C2H5 0 (60)	924
Cl(CH ₂) ₃ C=CCO ₂ CH ₃	[EEO(CH2)3]CuLi	THF, -78°	ÉEO(CH ₂) ₃ ()	925
CF3CO2(CH2)3	[EEO(CH ₂) ₃] ₂ CuLi O ₂ CH ₃	THF, -78°	$\begin{array}{c} CF_3CO_2(CH_2)_3 \\ EEO(CH_2)_3 \\ CO_2CH_3 \end{array} (-)$	925
(E)-CH ₃ O ₂ CCH= CH(CH ₂) ₂ CO ₂ CH ₃	(CH ₃) ₂ CuLi	Ether, -25°, 30 min	CO ₂ CH ₃ (76)	659
BnOCH ₂ O	(n-C3H7)2CuLi 4H9-1 (2.5 eq)	Ether, -25°, 12 h	BnOCH ₂ O C ₄ H ₉ - π CO ₂ C ₄ H ₉ - t (80) OH	926
(E)-i-C ₃ H ₇ CH= CHCO ₂ C ₂ H ₅	C2H3C[=NN(CH3)2]CH2CuLi (C6H3S)	THF, -78 to 0°, 2.5 h	syn:anti 6:1 $C_2H_5C[=NN(CH_3)_2]CH_2CHC_3H_7i$ \downarrow $C_2H_5O_2CCH_2$ ()	927
N=C6H5	(CH ₃) ₂ CuLi	Ether, DMS, 0°, 2.5 h	$\begin{array}{c} \text{CH}_3\text{COCH}_2\text{CH}(\text{CH}_3)\\ 0\\ N=\\ C_6\text{H}_5 \end{array} \tag{51}$	928
	(CH2=CH)2CuLi	Ether, -78°	CH ₂ OTBDMS OC.Hart	930
Ů	(CH3)2CuLi	 Ether, -78°, 10 min CH₃(C₆H₅)₂SiCl, TEA, HMPA, -78 to 20° 	OSi(C ₆ H ₅) ₂ CH ₃ (76)	931
	t-C4H9Cu(SC4H5)Li	1. THF, -78 to -10° 2. TMSCI, TEA, HMPA, 0°	OTMS C ₄ H ₉ -r (89)	932
	TMSCH—CHCH2Cu(CN)Li	Ether, TMEDA, -78°, 3 h	CH ₂ CH=CHSi(CH ₃) ₃ (65)	933
	$\bigvee \qquad \qquad$	THF, -78 to 20°, 3 h	$ \underbrace{ \begin{array}{c} & & \\ &$	934
	RO $LiCu(C_4H_{9^{-4}}) \rightarrow OR$ RO RO RO RO	THF, -80 to 20°, 2 h	(94)	935
	TBDMSOC(C ₂ H ₃)=CHCH ₂ CuLi TMSC=C	Ether, THF, -70°, 3 h		735

TABLE VI.	CONJUGATE ADDITIONS OF	LOWER ORDER LITHIO	ORGANOCUPRATES	(Continued)
	CONSCORTE I IDDITIONS OF	LOWLIN ONDER DITINO	OROTHOCOLIGIES	Comment

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
	(C ₂ H ₅ O) ₃ CC(=CH ₂)Cu(CN)Li	THF, -50°, 1.5 h		(68)	3621
	(CH ₃) ₂ CuLi	1. — 2. (CH ₃) ₂ N ⁺ =CH ₂ CF ₃ CO ₂ ⁻		(80)	94
	r-C₄H₄Cu(C=CC(CH₃)₂OCH₃)Li	THF, -20°	C ₄ Hg-r	(95)	26
	$(\triangleright)_{2}^{\text{Cal.i}}$	Ether, -50°, 15 min	Å,	(83)	944
	Cu(SC ₆ H ₅)Li	THF, -78 to 20°, 2 h	in the second se	(52)	907
	(CH ₃) ₂ CuLi	 Ether, 0°, 1 h C₆H₅SCI, -78 to 20° 	SC ₄ H ₅	(55)	946
	(CH ₃) ₂ CuLi	1. Ether, 0°, 30 min 2. CH ₃ CHO, ZnCl ₂ , 0°	CHI(OII)CH ₃	(97)	947
	(CH ₃) ₂ CuLi	1. (<i>i</i> -C ₃ H ₇) ₂ O, −25°, 1 h 2. CH ₃ COCl, 20°, 1 h		(87)	948
	(r-C4H9OCH2)2CuLi	t-C₄H₂OCH₃, (i-C₃H7)₂S, -30°, 45 min	CH ₂ OC ₄ H ₉ -1	(88)	949
		THF, DMS, -80°, 3 h		(90)	356
	Cu(CECC ₃ H ₇ -n)Li	-	0°	(91)	3560
	TMS 2	-	n-C ₃ H ₇	(70)	356b
	(C2H3O)2CH Cu(SC6H3)Li	Ether, -78 to -40°, 3 h	TMS ² (C ₂ H ₅ O) ₂ CH	(88)	358
	$(C_2H_5O)_2CuLi$	THF, -78 to -40°, 1.5 h	C2H30	(82)	574

Substrate	Organocuprate	Conditions	and Yield(s) (%)	Ref
e Br	CH ₂ =CHCu(SC ₆ H ₅)Li (3 eq)	THF, -78°	(70)	93
O ₃ SCH ₃	(CH ₃) ₂ CuLi	Ether, -78 to 20°	(72)	9
OCH2CH=CH	dz (CH3)2CuLi	THF, -78 to 0°	HO CH ₂ CH=CH ₂ (100)	9
P(O)(OCH ₃) ₂	(CH3)2CuLi	Ether, 0°, 2 h	P(O)(OCH ₃) ₂ (90)	9
Î L	(C ₆ H3)2CuLi	1. Ether, 0°, 1 h 2. CH ₃ I, HMPA, 0–20°		9
l)	C₀H₅(n-C₃H7C≡C)CuLi	 Ether, 0°, 2.5 h BrCH₂CO₂CH₃, HMPA, 20° 	CH ₂ CO ₂ CH ₃ (51)) 9
Å	$\begin{pmatrix} C_{4}H_{9} + t \\ N \\ CuLi (3 eq) \end{pmatrix}$	1. THF, −60 to −20° 2. TMSCI 3. NH ₃ /NH₄CI, H₂O) (
	$(\gamma \gamma 2)$ $Cu(C = CC_3H_{\tau}n)Li$	 Ether, -78 to -25°, 2 h TMSC(=CH₂)COCH₃, -25°, 1 h 		7)
Ļ,	(3. KOH, CH ₃ OH Ether, THF, 0°, 2.5 h	(8	6)
CH ₂ O ₂ CCH ₃	(C ₆ H ₅) ₂ CuLi (3 cq)	-	C ₆ H ₅	0)
CI CO2CH3	(CH3)2CuLi (2 eq)	Ether, -78°, 1.5 h	$CO_2CH_3 $ (9)	9)
O ₂ CCH ₃	$(\triangleright)_{2}^{Culi}$	Ether, -78°, 3 h	(75 (75	5)
ľ.	(C2H3O)7CH Cu[C≡CC4H0-1]Li	False 70 to 00 17 h	<u>i</u>	

TABLE VI. CONJUGATE ADDITIONS OF LOWER ORDER LITHIO ORGANOCUPRATES (Continued)

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)	Refs
	TMS Cu[C≡CC₄H9-r]Li	Ether, -78 to 0°, 16 h) 356a
OCH OTROMS	r-C4H9(C6H3S)CuLi	THF, 0°, 2 h	CH CH CH CH CH) 95(
	, ССН ₃ (СН ₃)₂СuLi ₄H ₉ -г (2 сq)	THF, 0°, 30 min	CH ₃ CO ₂ CH ₂ O CC ₄ H ₉ -t (60) 95
C,H,CO2CH2 O OC	s (CH3)2CuLi 20C6H5	THF, 0°, 2 b) 95
C ₆ H ₅ O	(CH ₂ —CH) ₂ CuLi ЮСН ₃	Ether, THF, 0°, 1 h	$C_6H_5 \rightarrow O \rightarrow CH=CH_2$ (68)) 952
C7	$\binom{n-C_5H_{11}}{2}^{CuLi}_2$	Ether, - 78°, 20 min	о С ₅ Н ₁₁ -л (67) 95:
CH2=CH	(CH ₃) ₂ CuLi	Ether, DMS, -30°, 25 min	$C_{2}H_{5}$ + $C_{3}H_{7}$ (51)) 954)
TMSC=CCOC,Hg-4	(CH3)2CuLi	1. Ether, -78 to 0° 2. TMSCI, TEA	$TMS = C = C_{a}H_{g-t} $ (86)) 905
CO2CH3	(C ₆ H ₅) ₂ CuLi	Ether, 0°, 1 h	CH(C ₆ H ₃)CH ₂ CO ₂ CH ₃ (64) 955
COCH3	(CH ₃) ₂ CuLi	-	CH(CH ₃)COCH ₃ (67) 95
С.H.COCH—СНС.H.C	CH3-p [(C6H3S)2CC6H3]2CuLi	THF, -70°, 2 h	C ₆ H ₃ COCH ₂ CH(C ₆ H ₄ CH ₃ - <i>p</i>)- C(SC ₆ H ₅) ₂ C ₆ H ₅ (50 C ₆ H ₅	957
p-C6H3C6H4CO2	(C ₆ H ₅) ₂ CuLi	Ether, 0°, 2 h	р-С.Н.С.Н.СО2 (80)	958
СНО	(CH2=CH)2CuLi	THF, DMS, -78 to -20°, 2.5 h	CH=CH ₂ cis: trans 36:64) 959
Ů	(CH ₃) ₂ CuLi	1. — 2. C ₆ H ₅ N(O ₂ SCF ₃) ₂	03SCF3 (72) 960
	[C ₂ H ₅ OC(=CH ₂)] ₂ CuLi (2 eq)	Ether, -78 to 0°, 1 h	$ \begin{array}{c} 0 \\ C \\ C$) 357
CO2CH3	[C ₆ H ₃ (CH ₃) ₂ Si] ₂ CuLi	1. THF, -23°, 45 min 2. CH ₃ I, HMPA, -23°, 2 h	C ₆ H ₅ (CH ₃) ₂ Si (92) 575

TABLE VI.	CONJUGATE ADDITIONS OF LOWER ORDER LITHIO ORGANOCUPRATES (Continued)

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
Ů,	CH ₂ =CH Cu(SC ₆ H ₅)Li	Ether, THF, 25°	CH=CH ₂ (76)	961
Ů	(CH3)3SnCu(SC6H3)Li	THF, -20 to 20°, 45 min	Sn(CH ₃) ₃ (77)) 962 963
CH2SC6H3	(CH3)2CuLi (3 eq)	-	0 	913
CO2CH3	(Culi	1. THF, (i-C ₃ H ₇) ₂ S, -30 to 0°, 12 h 2. NaIO ₄ , CH ₃ OH	CIS: trans 11:89 CO ₂ CH ₃ (80) CH ₂ COCH ₃	357ъ
СН-ВТ	(Culi	1. THF, (<i>i</i> -C ₃ H ₇) ₂ S, −78 to 0°, 5 h 2. CuCl ₂ , H ₂ O) 357ъ
CH ₃ (CH=CH) ₂ COCH ₃	(E)-(CH ₃ CH=CHCH ₂) ₂ CuLi	Ether, -60°	$CH_2 = CHCH(CH_3)C(CH_3) = CHCH_2COCH_3 (60)$ $O C_4H_9 \cdot n$	385
C(SCH ₃) ₂	n-C ₄ H ₉ Cu(SC ₆ H ₅)Li	THF, -78°	E: Z 90:10	517
i-C ₃ H ₇ O	¹ 3 ⁾ 2 CH ₃ Cu(SC ₆ H ₅)Li	THF, -78°	<i>i</i> -C ₃ H ₇ O <i>E</i> :Z 93:7 (84)	517
Ů	(CH3)2CuLi	 THF, -20° TMSCI, TEA, HMPA, -78 to 20° 	OTMS (93) 964
a n-C3H7CH=CCICOC2H3	(CH3)2CuLi (2 co)	Ether, -70°, 30 min	n-C3H7CH(CH3)CHClCOC2H3 (79) 965
	(CH ₃) ₂ CuLi	Ether, - 50°, 30 min	(73) 965
CH2CO2C2H5	[CH ₂ =C(CH ₃)] ₂ CuLi	 Ether, DMS NaOC₂H₅, C₂H₅OH 	C(CH ₃)=CH ₂ (-	-) 966
OH COCH3	(CH2=CH)2CuLi	THF, ether, DMS	COCH3 CH=CH2 (-	-) 967
	(CH ₃) ₂ CuLi	Ether, -5°, 3 h	CHBr,	-) 967
L.	(CH ₃) ₂ CuLi	1. (<i>i</i> -C ₃ H ₇) ₂ O. −25°, 1 h 2. CH ₃ COCI, 25°	02CCH3 (87	7) 968
CO ₂ CH ₃	(E)-(TMSCH=CH)2CuLi	Ether, -78°, 5 h	CO ₂ CH ₃ TMS	3) 969

TABLE VI.	CONJUGATE ADDITIONS OF LOWER ORDER LITHIO ORGANOCUPRATES (Continued)	

Substrate	Organocuprate	Reaction Product(s) Organocuprate Conditions and Yield(s)				ReactionProduct(s)OrganocuprateConditionsand Yield(s) (%)			Refs.
C ₂ H ₅	(CH3)2CuLi (3 eq)	Ether, 0°, 2 h	C ₂ H ₅	(62)	970				
Ů	(CH ₃) ₂ CuLi	Ether, 0°	Jun .	(54)	971				
OC(C6H5)3	(CH ₃) ₂ CuLi	Ether, -23°, 30 min	Lo - 0	(95)	972				
⊖ → Br	Cu(SC ₆ H₅)Li	THF, ether, 0°, 2.5 h	E:Z 50:50	(91)	942				
C(SCH ₃) ₂	(CH3)2C=CH(CH2)2Cu(SC6H3)Li	THF, -78°	O (CH ₂) ₂ CH=C(CH ₃) ₂ SCH ₃	(75)	517				
CH(CH ₃)O ₂ C	CH3 (CH3)2CuLi	Ether, -23 to 0°, 25 min	CH ₃	(59)	973				
SCH3 SC2H3	(CH ₃) ₂ CuLi	THF, -78°, 45 min	SC ₂ H ₅	(67)	517				
$\dot{\bigcirc}$	(4-C4H9)2CuLi	Ether, DMS, -70°	cis: trans 82:18	(88)	974				
$\overset{\mathbf{i}}{\bigcirc}$	(CH3)2CuLi	THF, -15°	Ĵ Ĵ m	(74)	974				
Å	(t-C4H9)2CuLi	THF, -15°	Ces: trans 10:90	(38)	974				
(C ₂ H ₃) ₂ C=C(CH ₃)CF	IO (CH3)2CuLi	 Ether, pentane, 0° TMSCI, TEA, HMPA 	cis: trans 2:98 (C_2H_3) ₂ C(CH ₃)C(CH ₃)=CHOTMS + (C_2H_3) ₂ C=C(CH ₃)CH(CH ₃)OTMS TBDMSO	(70) (16)	890				
H CO2CI	13 (CH3)2CuLi (2 cq)	THF, -70 to 20°	H CO2CH3	(77)	975				
	Cl(CH ₂) ₂ C(=CH ₂)Cu(CN)Li	THF, -78 to -48°, 2.5 h		(72)	911				

TABLE VI. CONJUGATE ADDITIONS OF LOWER ORDER LITHIO ORGANOCUPRATES (Continued)

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		Refs
CO2CH3	(CH3)3SnCu(SC6H3)Li	THF, HMPA, -20 to 0°, 2 h	Sn(CH ₃) ₃	()	976
	C ₆ H ₅ (CH2==CH)2CuLi (2 eq)	Ether, DMS, -35°, 5 h	$CH_2=CH_4OCH_2C_6H_5$ $CH_3O_2C_6H_5OCH_2C_6H_5$	(78)	97.
сн,о-сс-	(n-C4H9)2CuLi 2)2OBn (4 eq)	1. THF, ether, -35°, 2.5 h 2. 10% H ₂ SO ₄ , THF, 25°, 18 h	$P_{n-C_4H_2} \rightarrow OH_{(CH_2)_2OBn}$	(88)	97
C ₉ :-C ₆ H ₁₃ :-C ₆ H ₁₃ :-C ₆ H ₁₃ :-C ₆ H ₅ :-C ₆ H ₅	(СН ₃)2СиLі Н ₃	1. Ether, -15 to 25° 2. Al(Hg), C ₂ H ₅ OH, H ₂ O 3. NaOH, H ₂ O	н ССН2CO2H С6H13-л 65% ее	(53)	979
Å.	(CH ₃) ₂ CuLi	Ether, 0°, 1 h		()	980
(Е)-С"Н"СН—СНСО	C ₄ H ₉ -1 (CH ₂ =CHCH ₂) ₂ CuLi	Ether, 0 to 20°, 1 h	C ₆ H ₅ CH(CH ₂ CH=CH ₂)CH ₂ COC ₆ H ₉ - <i>t</i> + C ₆ H ₅ CH=CHC(CH ₂ CH=CH ₂)- (C ₄ H ₉ - <i>t</i>)OH	(45) (43)	98
-C ₆ H ₁₃ -C ₆ H ₁₃ -C ₂ Cl	(CH ₃) ₂ CaLi H ₃	Ether, -15 to 25°	^{C₆H₅} ^{S=0} ^{CO₂CH₃}	(86)	982
<i>(Е)</i> -С ₆ Н ₅ СН=СНСОС ₆	H ₅ $\left[\begin{array}{c} (CH_3)_3 Sn \\ \end{array} \right]_2^{CuLi}$	- -	(CH ₃) ₃ Sn CH(C ₆ H ₃)CH ₂ COC ₆ H ₅	(52)	98
Ŷ	(CH3)3SnCu(SC6H5)Li	THF, -20 to 20°, 75 min		(69)	96
	[C ₆ H ₅ SCH(TMS)] ₂ CuLi	THF, -78 to 20°, 12 h	CH(TMS)SC6H5	(52)	98
ST Scot	(CH3)2CuLi i4CH3-p (5 eq)	Ether, THF, -78 to 0°, 3 h	C ₆ H ₄ CH ₃ ·r	()	98
(E)-C ₆ H ₅ CH=CHCO	2C2H3 (2-C3H2N)2CuLi	Ether, 0°, 20 min	2-C ₃ H ₄ NCH(C ₆ H ₅)CH ₂ CO ₂ C ₂ H ₅	(82)	98
0	[TMSC(=CH ₂)] ₂ CuLi (4 eq)	Ether, THF, -20°, 10 h		(61)	357
	(E)-(TMSCH=CH)2CuLi	Ether, -78 to 0°, 1 h		(64)	3570
			TMS		

TABLE VI. CONJUGATE ADDITIONS OF LOWER ORDER LITHIO ORGANOCUPRATES (Continued)

Substrate	Organocuprate Conditions		Product(s) and Yield(s) (%)	Ref
(Z)-C ₆ H ₅ CH = CBrCHO	(CH3)2CuLi (4 eq)	 Ether, 0° (CH₃CO)₂O, −78 to 20° 	C_6H_5 O_2CCH_3 (39)	91
P CH-S	(CH ₃) ₂ CuLi	1. Ether, 0°, 30 min 2. CH ₃ CHO, ZnCl ₂ , 0°	(82)	94
	(n-C4H9)2CuLi	Ether, -78°, 30 min		98
	(CH3)2CuLi (2 eq)	 Ether, - 78 to 25° CH₂=CHCH₂Br, HMPA, 0° H⁺, H₂O 		98
C10 THPOCH ₂ C(CH ₃) ₂ (CH ₂) ₃ - C=CCO ₂ CH ₃	(n-C4H3)3SnCu(SC6H3)Li	THF, -40°	THPOCH ₂ C(CH ₃) ₂ (CH ₂) ₃ . (86) C[Sn(C ₄ H ₃ -n) ₃)=CHCO ₂ CH ₃	99
CH3-CO2CH3	[(C ₆ H ₅) ₂ CH ₃ Si] ₂ CuLi	THF	CH ₃ -CH[(C ₆ H ₅) ₂ CH ₃ Si]CH ₂ CO ₂ CH ₃ ()	99
C3H7-i	(CH3)2CuLi	Ether, -78°, 4 h	(71)	99
^{n-C₈H₁₇ C₆H₅Se}	n-C4H9Cu(SeC6H5)Li	THF, 0°, 2 h	$\begin{array}{c} n - C_8 H_{17} \\ n - C_4 H_9 \end{array} \xrightarrow{Ts} (62)$	99
	(n-C4H9)2CuLi	1. THF, diglyme, -78°, 2 h 2. HOAc, H ₂ SO ₄ , H ₂ O	$^{n-C_4H_9}C_{H_2CO_2H}$ (64–76) C_6H_5 H (64–76) >99% ee	37
E or Z CH ₃ O H SC ₆ H ₅	(CH3)2CuLi	Ether, -78°, 1 h	CH ₃ O O H H	99
	(CH ₃) ₂ CuLi	Ether, THF, DMS, -70°, 1.5 h		99
$n-C_3H_7CH=$ CFCOC_4H_9-n	(CH3)2CuLi (2 eq)	Ether, -30°, 1.5 h	$n-C_3H_7CH(CH_3)CHFCOC_4H_9-n $ (80)	96
	(C ₆ H ₅) ₂ CuLi	-	$CH_2C_6H_5$ C_4H_9-n (57)	91
i-C3H7	(C ₆ H ₅) ₂ CuLi	THF, -78 to 20°, 3 h	CH ₂ C ₆ H ₅ (30)	99
C(SCH ₃) ₂	(CH ₃) ₂ CuLi (xs)	Ether, 0°, 5 h	$C_4 H_{q^{-1}} $ (20)	99

TABLE VI. CONJUGATE ADDITIONS OF LOWER ORDER LITHIO ORGANOCUPRATES (Continued)

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
(E)-C ₆ H ₅ CH= CHCOCH ₃	(CH ₃) ₂ CuLi (2 eq)	 Ether, 0°, 30 min HCO₂C₂H₅, 0° BF₃·CH₃OH, 20° 	C ₆ H ₃ CH(CH ₃)CH ₂ COCH ₂ CH(OCH ₃) ₂	(65)	947
TBDMSO n-C ₃ H ₇ C ₃ H ₇	(CH3)2CuLi (2 eq)	THF, -70 to 20°	n-C ₃ H ₇ C ₂ H ₅ CO ₂ CH ₃	(60)	975
CO2CH3	(CH3)2CaLi	Ether, THF, -10°, 30 min	CO ₂ CH ₃	(74)	998
×°	(CH3)2CuLi	1. THF, -78° 2. TMSCI	OTMS	()	999
, ch	(CH3)2CuLi	Ether, 0°, 30 min		(83)	68a
of the second se	(CH ₃) ₂ CuLi	Ether, 0°, 15 min	.00	(70)	68a
C,H,	(n-C4H9)2CuLi	Ether, -20°, 2 h	n-CaHaCH(CaHa)CH2	(33)	1000
(<i>E,E</i>)-C ₆ H ₅ (CH= CH) ₂ CN	(CH2=CHCH2)2CuLi	Ether, 0 to 20°, 1 h	(E)-C ₆ H ₃ CH(CH ₂ CH=CH ₂)- CH=CHCH ₂ CN	(80)	981
Ho	(CH3)2CuLi (5 eq)	Ether, 0°, 2 h	H-o	(89)	1001
	(CH3)2CuLi	Ether, DMS, 0-25°, 4 h		(67)	1002
	(CH3)2CuLi	Ether, -15°	CaH9-1	(70)	974
I-CaHeo	(CH2=CH)2CuLi	Ether, 0°, 2 h		(71)	1003
° TMSO	(CH3)2CuLi	 Ether, 0°, 1 h (C₂H₅O)₂P(O)Cl, ether, HMPT 	(C ₂ H ₅ O) ₂ P(O)O	(84)	1004
2 C ₆ H ₅ CO ₂ C ₂ H ₅	(n-C4H9)2CuLi	DME, -78 to -20°	n-C4H9 C6H5 C02C2H5	(87)	1005

TABLE VI	CONILIGATE	ADDITIONS	OF LOWER	OPDER I ITHIO	OPGANOCUPPATES	(Continued)
TTDLL VI.	CONJOORIE	10DIIION3	OF LOWER	OKDER EITHO	OROANOCOTRAILS	(communacu)

Substrate	Organocuprate	ReactionProduct(s)ocuprateConditionsand Yields (%)			Refs.
C ₆ H ₅ CO ₂ CH ₃	(C ₆ H ₅) ₂ CuLi	Ether, -78°	C ₆ H ₅ C ₆ H ₅ CO ₂ CH ₃	()	1006
H CO2CH3	(CH ₃) ₂ CuLi	Ether, DMS, 20°, 1 h	THE STREET	(84)	1007
¢	[CH2=C(CH3)]2CuLi	Ether, -60 to 0°, 4 h		(81)	1008
	(CH3)2CuLi (2 eq)	Ether, -30 to 25°	i-C ₃ H ₇	(88)	1009
	(n-C4H9)2CuLi (3 eq)	Ether, 0°	OHTH H-C4H5 cis:trans 1:20	(79)	1010
C13 (E)-Br(CH2)3C(CH3)2-	(CH ₃) ₂ CuLi	Ether, DMS, 0°, 1.5 h	Br(CH ₂) ₃ C(CH ₃) ₂ CH(CH ₃)-		1011
CH=CHCOC ₄ H ₅ -r	(CH ₃) ₂ CuLi	Ether, DMS, HMPT, 25°, 7.5 h	CH ₂ COC ₄ H ₉ -t (E)-n-C ₄ H ₉ C(CH ₃) ₂ CH= CHCOC ₄ H ₉ -t	(82–92) (72–97)	1011
(NC)2C	(CH3)2CuLi	Ether, 0°, 2 h	(NC) ₂ CH H	(85)	1012
C(SCH ₃) ₂	CH3Cu(SC6H3)Li (1.2 eq)	THF, -78 to 0°, 45 min	O CH3 C-SCH3 C ₆ H5 E:Z 67:33	(82) ^d	517
Cu O H H C ₃ H ₇ -i	(CH3)2CuLi	Ether, 25°, 45 min		(95)	1013
	ſ-C₄H9Cu(C══CC3H77)Li	Ether, HMPA, -25°	H H C ₄ H ₉ -n	(95)	1014
CH ₃ O OCH ₃	(CH3)2CuLi	Ether, -78°, 1 h	CH ₃ O OCH ₃ O	(40)	1015
P-BnOC ₆ H ₄ BnO	(CH ₃) ₂ CuLi OCH ₃	1. Ether, 0°, 10 min 2. (C ₆ H ₃) ₂ Se ₂ 3. H ₂ O ₂	P-BnOC ₆ H ₄ BnO	(55) H ₃	1010

TABLE VI.	CONJUGATE	ADDITIONS OF	LOWER	ORDER	LITHIO	ORGANOCUPRATES	(Continued))
-----------	-----------	--------------	-------	-------	--------	----------------	-------------	---

TABLE VI. CONJUGATE ADDITIONS OF LOWER ORDER LITHIO ORGANOCUPRATES (Continued)

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
C16 C2H5 NO C4H5	n-C4H9Cu(SC6H5)Li	THF, -10°	n-C ₄ H ₉ CH(C ₂ H ₅)	(95)	1017
C ₁₇ r-C ₄ H ₉ r-C ₄ H ₉ r-C ₄ H ₉	(r-C4H9)2CuLi	THF, -78°, 4 h	C4H9+++	(22)	1018
			t-C4H9 C4H9-t	(2)	

The yield was reported in the 75-100% range.
The yield was reported in the 55-60% range.
BT = benzothiazol-2-yl.
The dimethylated product was also formed in 4% yield.

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)	Refs
C ₀	омом "		омом	
O ₂	-С-с-	1. THF, 0°, 45 min 2. Ac ₂ O, 25°, 12 h	-ОАс (6	7) 300
	Си -омом "	"	ОАс (5	8) 300
CuCl ₂	OMOM TMSCH ₂ C(=CH ₂)Cu	Ether, -23°, 1 h; 25°, 15 h	OMOM TMSCH ₂ C(=CH ₂)- C(=CH ₂)CH.TMS (70-8	1019
C₅H₃N =S= O	(CH ₃) ₂ C=C=CHCu (CH ₃) ₂ C=C=C(C ₆ H ₅)Cu	THF, -60° , 3 h THF, -60° , 3 h	(CH ₃) ₂ C(C=CH)S(O)NHC ₆ H ₅ (8 (CH ₃) ₂ C(C=CC ₆ H ₃)S(O)NHC ₆ H ₅ (7	85) 1020 72) 1020
p-CH ₃ C ₆ H ₄ STs		Ether, THF, -78 to 25°, 4 h	SC ₆ H ₄ CH ₃ -p (6	57) 1021
(CH ₃) ₂ SnBr ₂	CH ₂ N(CH ₃) ₂	C₅H₅, 25°	CH ₂ N(CH ₃) ₂ (8	31) 1022
C,			0	
CH ₃ OCH ₂ Br		Ether, 25°, 3 h	CH2OCH3 (5	i4) 1021

TABLE VII. SUBSTITUTION REACTIONS OF ORGANOCOPPER REAGENTS, RCu

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
C,H,CH2OCH2CI	ja v	Ether, 25°, 3 h	CH2OCH2C6H5	(65)	1021
(C2H3O)2P(O)CH2CI		THF, reflux 12 h	P(0)(0C ₂ H ₅) ₂	(64)	1023
C ₂ TMSC=CI C ₂ H ₃ O ₂ SCH=CHI C ₃	CH₂=C=CHCu C₄H₅C≡CCu	THF, -40 to 0°, 30 min Py, 25°, 24 h	CH,—C—CHC≡CTMS C,H,O,SCH—CHC≡CC,H,	(85) (63)	1024 290
BrC(=CH2)CH2OTMS	(C0) ₃ Cr-Cu	THF, DMS, 20°, 16 h	(CO) ₃ Cr-Cr-F	(76)	1025
C6H5(O2)S	C,H,C≡CCu	Py, 25°, 3 d	C6H5(O2)S CSC H	(62)	290
CH3C=CI HC=CCH2Br	$t-C_4H_9CH=C=CHCu$ (C_2H_3O) ₂ P(O)CH ₂ Cu (C_2H_3O) ₂ P(O)CH(CH ₃)Cu	THF, -40 to 0°, 30 min THF, -35 to 25°, 16 h THF, -35 to 25°, 16 h	$C_{6}H_{5}$ t-C_{4}H_{9}CH=C=CHC=CCH_{3} (C_{2}H_{5}O)_{2}P(O)CH_{2}CH=C=CH_{2} (C_{2}H_{5}O)_{2}P(O)CH(CH_{3})- CH=C=CH_{2}	(75) (72) (60)	1024 1026 1026
(C ₆ H ₅) ₃ CNH O C ₆ H ₅ CH ₂ CO ₂	CH₃CH=CHCH₂Cu	Ether, (<i>n</i> -C ₄ H ₉) ₂ S, THF, -35 to 0°	C ₆ H ₅ Ch ₂ CO ₂ cis: trans 45:55	(66)	1027
2					
CHC(CH ₃) ₂ Cl CH ₂ =C(CH ₃)COCl	C ₄ H ₃ C=CCu	Ether, HMPA, 20°, 12 h	$[t-C_{4}H_{4}N = CHC(CH_{3})_{2}]_{2}$ $C_{4}H_{3}C = CCOC(CH_{3}) = CH_{2}$	(85–89) (85)	1028
CH _z =C(CH ₃)C=CI	r-C4H2CH=C=CHCu	THF, -40 to 0°, 30 min	CH2=C(CH3)C=CCH=C=CH	IC4H9-1 (85)	1024
}–c≡α	>=c=_	THF, -40 to 0°, 30 min		(85)	1024
CH ₃ C=CC-CI HC=CC(CH ₃) ₂ Br	cu t-C ₄ H ₉ CH=C=CHCu (C ₂ H ₅ O) ₂ P(O)CH ₂ Cu	THF, -40 to 0°, 30 min THF, -35 to 25°, 16 h	CH ₃ (C=C) ₂ CH=C=CHC ₄ H ₅ -t (C ₂ H ₅ O) ₂ P(O)- CH ₂ CH=C=C(CH ₃) ₂	(75) (69)	1024 1026
	(CH ₃) ₃ SnCu	THF, DMS, HMPA, -48 to 20°, 4 h	Sn(CH ₄) ₃	(82)	963
C'H'I	^{CF3} → ^{Cu} _F	-	$F \xrightarrow{C_6H_5} F$	(56)	1030
	Cu Re	Neat, 130°, 1 h	€ Fe €	(70)	1031
\bigcirc	(CO) ₂ Cr II	THF, DMS, -78 to 20°, 16 h	F	(84)	1032

TABLE VII. SUBSTITUTION REACTIONS OF ORGANOCOPPER REAGENTS, RCu (Continued)

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		Refs
HC=CCH(OMs)- C.Hn	(C ₄ H ₅) ₂ C=NCH ₂ Cu·DMS	THF, -50°, 45 min	$(C_6H_5)_2C=N$	(49)	1033
C ₂ H ₅ (O ₂)S	CH ₃ Cu	THF, 0°, 10 min	$C_2H_5(O_2)S$	(96)	290
C2H5(O2)S	CH3Cu	THF, 0°, 10 min	C ₂ H ₅ (O ₂)S	(47)	290
CICO(CH ₂)4COCI	Cu Fe	THF, 25°, 1.5 h	$\begin{bmatrix} _{\text{Fe}} _{\text{CO(CH}_2)_2} \end{bmatrix}_2$	(39)	1031
$\overbrace{OC_2H_5}^{OC_2H_5}$	NCu (5 eq)	1. THF, hexane, reflux 2 h 2. O_2 , -78°		(51)	303
NN(Li)Ts	C ₆ H ₅ Cu·S(C ₃ H ₇ - <i>i</i>) ₂	THF, -20 to 0°, 1.5 h	NNHTs C ₆ H ₅ OH	(78)	1034
	(CH ₃) ₃ SnCu	THF, DMS, -48°, 2 h	Sn(CH ₃) ₃	(75)	963
OCH3 CON(CH3)2 C ₄ H ₅ N(CH ₃)Cu (5 eq)	1. THF, 10°, 2 h 2. O ₂ , -78°	OCH ₃ CON(CH ₃) ₂	(48)	302
₽-0₂NC₅H₄COCI	Re Cu	THF, 25°, 1.5 h	COC ₆ H ₄ NO ₂ ·p	(79)	1031
n-C4H9 CH2Br	$n-C_{4}H_{2}Cu$ (2 eq)	Ether, -70 to -40° , 2 h	TMS(C4H9-n)2C	(100)	1035
IMS	s-C,H₅Cu (3 eq)	Ether, -70 to -40° , 2 h	n-C4H9 CH2C4H9-s	(100)	1035
n-C₄H₂C≡CCH₂Br	(C ₂ H ₅ O) ₂ P(O)CH ₂ Cu	THF, -35 to 25°, 16 h	$(C_2H_5O)_2P(O)CH_2C-(C_4H_9-n)=C=CH_2$	(70)	1026
C ₂ H ₅ (O ₂)S	n-C ₄ H ₉ Cu	THF, 0°, 10 min	C ₂ H ₅ (O ₂)S C ₄ H ₉ -n	(90)	290
	C ₆ H ₅ C==CCu	Py, 100°, 11 h	C2H5(O2)S	(76)	290
C₅H₅C≡CI	(CH ₃) ₂ C=C=CHCu	THF, -40 to 0°, 30 min	C ₆ H ₅ (CH ₃) ₂ C=C=CHC=CC ₆ H ₅ C ₈ H ₁₇	(90)	1024
1 Ho		THF, Pd[P(C ₆ H ₅) ₃] ₄ (cat.), - 78 to 20°, 5 h	H H P	(61)	1036

TABLE VII. SUBSTITUTION REACTIONS OF ORGANOCOPPER REAGENTS, RCu (Continued)

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		Refs
C, 77.49					
C ₆ H ₅ OMs	TMSCu	Ether, HMPA, -60° , 1 h	C ₆ H ₅ C ₆ H ₅ CH ₂ TMS	(47)	1037
C ₆ H ₅ C ₆ H ₂ CH ₂ C	TMSCu	Ether, HMPA, -60° , 1 h		(77)	1033
H C ₆ H ₅ C ₃ SCH ₃	(C ₆ H ₅) ₃ SnCu	THF, LiBr, -60°, 3 min	$=C=\sum_{c_6H_5}^{Sn(C_6H_5)_3}$	()	1038
	C ₆ H ₅ Cu•(i-C ₃ H ₇) ₂ S	THF, -20 to 0°, 1.5 h	NINH15 rCeHs OH	(80)	1034
	N(Li)Ts C ₆ H ₃ Cu·(<i>i</i> -C ₃ H ₇) ₂ S CH ₃	THF, -20 to 0°, 1.5 h	C ₆ H ₃ CH(OH)CH(C ₆ H ₃)- C(CH ₃)=NNHTs erythro:threo 7:1	(60)	1034
	C ₆ H ₃ Cu·(<i>i</i> -C ₃ H ₃) ₂ S Li)Ts	THF, -20 to 0°, 1.5 h	HO CH	(79)	1034
n-C₀H₁₃C≡CCH- (OMs)CH₃	(C ₆ H ₅) ₂ C=NCH ₂ Cu·DMS	THF, -50°, 45 min	C ₆ H ₅ (C ₆ H ₅) ₂ C=NCH ₂ C- (C ₆ H ₁₃ -n)=C=CHCH ₃	(54)	1033
C6H5	N (n-C ₄ H ₉) ₃ SnCu	THF, HMPA, 0°, 4.3 h	C6H5 Sn(C4H9-n)3	(54)	1039
C15 CH2CI	Br	Ether, C ₆ H ₆ , 20°, 12 h	Br C	(64)	1040

TABLE VII. SUBSTITUTION REACTIONS OF ORGANOCOPPER REAGENTS, RCu (Continued)

" $MOM = CH_3OCH_2$.

454

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)	Refs
		A. Substitution Reactions		
C₀	1. a.a.		in succession in the second	
O2	C ₆ H ₅ C ₆ H ₅ (1 eq H)	THF, -42°, 4 h	C_6H_5 C_6H_5) 1041
C,	() O		CH OH	
(HCHO),	Ţ	THF, 20°	(60)) 457
C,	(2 eq H)			
O ₂ CCH ₃	n-C,H,Cu (1 eq A)	Ether, - 10 to 25°	$\frac{n - C_4 H_9}{E: Z \ 70:30} r O_2 CCH_3 $ (70)) 397
(CH ₃) ₂ C(OCH ₃) ₂	$n-C_{1}H_{13}Cu$ (1 eq. A)	Ether, -30°, 30 min	$n-C_7H_{15}C(CH_3)_2OCH_3$ (70)) 395
CH ₂ =CHCH ₂ Br	C ₆ H ₅ CH ₂ Cu [4 eq I]	THF, 0°, 10 min	$C_6H_5(CH_2)_2CH=CH_2 $ (50)) 480
	$C_2H_5 \rightarrow \begin{pmatrix} 0 \\ N \\ N \\ (10\% Cul) \end{pmatrix} + C_2H_5$	THF, 50°, 18 h) 1042
с, Сн₃Сн—Снсн₂он	$\begin{bmatrix} n-C_{4}H_{9}Cu\\(1 \text{ eq } A)\end{bmatrix}$ (3 eq)	Ether, -70 to 20°	$n-C_4H_9CH(CH_3)CH=CH_2$ + CH_3CH=CHC_3H_{11}-n (99) 86:14	464
C ₂ H ₅	t-C₄H₅O₂C(CH₂)₃Cu (2 eq) (xs B)	THF, -78 to -15°	r-C ₄ H ₉ O ₂ C(CH ₂) ₄ CHOHC ₂ H ₅ (87)) 482
\bigcirc	n-C ₄ H ₂ Li (5 eq) (20% CuI)	Ether, DMS, 0°, 3 h	п-С4Н9 (91)) 1043
C, CH₃C==CC==CI	EEO(CH ₂) ₂ CH=C=CHCu (1 eq LiBr)	THF, -50 to 0°, 1 h	$CH_3(C = C)_2 CH = C = CH(CH_2)_2 OEE $ (95)	1044)
SO-C.H.	CH3Cu (1 eq G)	THF, -78°	(70)) 1045
CH ₃ (CH=CH) ₂ - CH ₂ OH	$\begin{bmatrix} n-C_4H_9Cu\\(1 \text{ eq } A)\end{bmatrix}$ (3 eq)	Ether, -70 to 20°	$CH_3CH = CHCH(C_4H_9-n)CH = CH_2 (70)$) 464
OCH3	2-C3H4NCu (1 eq H)	C ₆ H ₅ CH ₃ , 100°, 1 h	OCH ₃ (76) 1046

TABLE VIII. REACTIONS OF RCU IN THE PRESENCE OF ADDITIVES

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C,				
N(CH ₃)(CH ₂) ₂ N(CH	3 ² t-C4H9Cu	1. —	(the contraction of the contrac	(54) 104
СН2ОН	(1 eq A)	2. CH_3OH , H_2O , HCl	CH ₂ C ₄ H ₉ - <i>t</i>	
CO ₂ C ₂ H ₅	F		CO2C2H5 C4H9-n	00) 46
$\mathbf{\nabla}$	$\begin{bmatrix} n-C_4H_9Cu \\ (1 \text{ eq } C) \end{bmatrix}$ (7.5 eq)	Ether, -70°	+ CO2C2H5	98) 40.
O2CCH3			C4H9-n 97:3	
C,H,COCI	o-NCC ₆ H ₄ Cu (4 eq I)	THF, 0°, 10 min	o-NCC ₆ H ₄ ÇOC ₆ H ₅ (!	95) 4801
4				
C2H502C(CH2)3	Li-Naphthalenide, Cul	THF, -45 to 20°, 3 h)-9~ (S	50) 482b
Br(CH ₂)3	(2 eq H)			
NC OP(0)(OC2H5)2	f		CN	70) 013
X	$\begin{bmatrix} n-C_4H_9Cu\\(1 \text{ eq } A)\end{bmatrix}$ (3 eq)	1 HF, -78° , 30 min	(Y)	/6) 613
\bigcirc			C4H9-n	
OSO-CF-				
H H H			AHA	
	CH ₃ Cu	1. Ether		-) 1048
	(HOH	
	В.	Conjugate Addition Reactions		
CH ₃ O ₂ CC=CCO ₂ CH ₃	CH3Cu (1 eq D)	Ether, -60°, 30 min	CH ₃ O ₂ C CO ₂ CH ₃ (8	8) 1049
HC=CCOCH ₃	<i>n</i> -C ₄ H ₉ Cu (1 eq D)	Ether, -70°, 30 min	r-C ₄ H ₂ (7	78) 1049
CO2CH3	$\begin{bmatrix} n-C_4H_9Cu\\(1+eq,A) \end{bmatrix}$ (2 eq)	Ether, -70 to 20°	n-C ₄ H ₉ CH(CH ₃)CH ₂ CO ₂ CH ₃ (9	95) 455
X				
A	[C,H,Cu] (5 ea)	1. Ether, -80 to -20°	C6H5 H (>9	90) 472
0,0	$\left[(1 \text{ eq } A) \right]^{(5 \text{ eq})}$	2. NaOH	CH ₂ CO ₂ H	
Ţ			23370 66	
r				
$ \prec$				
Ar =				
CICHALCH				
50	[or o]	1 54 55 55	H_CH2CO2H	
to	$\begin{bmatrix} n-C_4H_9Cu \\ (1 \text{ eq } A) \end{bmatrix} (2 \text{ eq})$	 Ether, - 78 to 25° NaOCH₃, CH₃OH, H₂O 	n-C4H9 (~7	(5) 4/3
J			>99% ee	
/				

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		Ref
CH ₃ CH=CHCO ₂ H	$\begin{bmatrix} n-C_4H_9Cu\\(1 \text{ eq } A)\end{bmatrix}$ (3 eq)	Ether, - 78 to 20°	n-C4H9CH(CH3)CH2CO2H	(86)	465
C ₆ H ₁₁) ₂ NSO ₂ CH ₂	$\int_{O} \begin{bmatrix} CH_2 = CHCu \\ (1 \text{ eq } A, 1 \text{ eq } B) \end{bmatrix} (10 \text{ eq})$	 1. Ether, THF, −78 to −40° 2. NaOH, C₂H₃OH 	CH ₂ CO ₂ H 98% ee	(~80)	47:
° ↓ s	n-C ₄ H ₉ Cu (3 eq B)	Ether, -70 to -40° , 5 h	S C4H9-n	(93)	105
Å	$\begin{array}{c} \text{THPO} \qquad \qquad Cu \\ n - C_5 H_{11} \\ (3 \text{ eq } B) \end{array}$	THF, -78°, 1 h	ОТНР	(84)	46
	1-C₄H₂Cu (F)	THF, -78°, 20 min	OTMS C4H9-1	(93)	67
P-C4H9O	CsH3Cu (2 eq B)	Ether, -78°, 1.5 h	ACHIO CH	(71)	105
(CH ₃) ₂ C=CHCO ₂ C ₂ H ₂	$ \begin{bmatrix} n-C_{4}H_{9}Cu \\ (1 \text{ eq } A) \end{bmatrix} (3 \text{ eq}) $	Ether, -78 to 20°	n-C ₄ H ₉ C(CH ₃) ₂ CH ₂ CO ₂ C ₂ H ₅	(94)	46
C ₆ H ₅ S C ₂ H ₅ 0 0	<i>n</i> -C ₄ H ₂ Cu (1 eq A)	THF, -78 to -10°, 16 h	n-C4H9 C2H5 0 0	(76)	105 105
ا	Cl(CH ₂) ₃ C(=CH ₂)Cu (2 eq B, 1 eq A)	Ether, -78 to -40° , 3 h	(CH2)3CI	(67)	65:
CO2CH3	$\begin{bmatrix} n-C_{4}H_{9}Cu \\ (1 \text{ eq } A) \end{bmatrix} (2 \text{ eq})$	Ether, - 70 to 20°	$ \begin{array}{c} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	(44)	455
Ů	t-C4H9N=C(Cu)C4H9-s (1 eq A)	Ether, - 78 to 0°	93:7 NC4H9-1	(65)	1054

TABLE VIII. REACTIONS OF RCU IN THE PRESENCE OF ADDITIVES (Continued)

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		Refs
	$\begin{bmatrix} NC(CH_2)_3Cu \\ (xs B) \end{bmatrix} (3 eq)$	THF, -78 to 20°, 4 h	(CH ₂) ₃ CN	(71)	481
C ₇ HO(CH ₂),- CH=CHCO ₂ C ₂ H ₅ Q	$\begin{bmatrix} n-C_4H_9Cu\\(1 \text{ eq } A) \end{bmatrix} (xs)$	-	HO(CH ₂) ₄ CH(C ₄ H ₅ -n)- CH ₂ CO ₂ C ₂ H ₅ Q	(75)	1055
TBDMSO	n-C.H.Cu (1 eq C)	Ether, -70 to -25°	TBDMSO C4H9-n	(81)	105
C ₃ COCH ₃	C ₆ H ₅ Cu (1 eq C)	Ether, -25°, 30 min	COCH ₃	(87)	1057
CHCO ₂ C ₂ H ₅	$\begin{bmatrix} n-C_{4}H_{9}Cu\\(1 \text{ eq } A)\end{bmatrix}$ (2 eq)	Ether, - 70 to 20°	n-C4H9 CH2CO2C2H5	(51)	455
C,			CeHs		
С₅Н₃СН=СНСНО	$t-C_4H_9N=C(Cu)C_4H_9-n$ (1 eq A)	Ether, -78 to 0°	C4H9-n C4H9-1	(93)	1054
C,H,C≡CCO₂H	$\begin{bmatrix} n-C_4H_9Cu \\ (1 \text{ eq } E) \end{bmatrix} (2 \text{ eq})$	Ether, 20°, 12 h	C ₆ H ₅ CO ₂ H n-C ₄ H ₅	(85)	1049
Å,	$\begin{bmatrix} CH_3Cu \\ (1 \text{ eq } C) \end{bmatrix} (5 \text{ eq})$	Ether, $-70 \text{ to } -40^{\circ}$	Å A	(98)	471
	$\begin{bmatrix} CH_{3}Cu \\ (1 eq A) \end{bmatrix} (6 eq)$	Ether, -70 to 20°, 14 h		(76)	448
- - -	CH2=C(CH3)Cu (3 eq B)	Ether, -78 to 40°, 1.5 h		(100)	468 469
Cii n-CgHi7	$\begin{bmatrix} CH_{3}Cu \\ (1 \text{ eq } A, 1 \text{ eq } B) \end{bmatrix} (10 \text{ eq})$	 Ether, -78° to -35°, 18 h NaOCH₃, CH₃OH, H₂O 	HO ₂ CCH ₂ $n-C_8H_{17}$ H (S-) 98% ee	(>90)	1058

TABLE VIII. REACTIONS OF RCU IN THE PRESENCE OF ADDITIVES (Continued)

TABLE VIII. REACTIONS OF RCU IN THE PRESENCE OF ADDITIVES (Continued)

A: BF₃ B: $P(C_4H_9-n)_3$ C: AlCl₃ D: $B(C_2H_5)_3$ E: *n*-butyl-9-borabicyclo[3.3.1]nonane F: TMEDA-(CH₃)₃SiCl G: Al(CH₃)₃ H: $P(C_9H_5)_3$ I: $P(C_2H_5)_3$

	Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
		A. Sub	ostitution Reactions			
C ₂	(C ₆ H ₅)C=NCH(OAc)CO ₂ C ₂ H ₅ C ₆ H ₅ CONHCHBrCO ₂ CH ₃	(C4H3S)2Cu(CN)Li2 (C6H3)2Cu(CN)Li2 (2 eq)	THF, -5°, 6 h THF, -78 to 20°	(C ₈ H ₅) ₂ C=NCH(C ₄ H ₃ S)CO ₂ C ₂ H ₅ C ₆ H ₅ CONHCH(C ₆ H ₅)CO ₂ CH ₃	(71) (83)	1063 1064
C ₃	O H NHCO ₂ CH ₂ C ₆ H ₅	t-C₄H9(CH3)Cu(CN)Li2 (3 eq)	THF, -23°, 1 h	HO ₂ C HO ₂ C H	(48)	644
	CH2=CHCH2CI	$(\bigcup_{CH_2OLi} Cu(CN)Li_2 $	THF, TMEDA, 0°, 10 min	CH ₂ OH CH ₂ CH=CH ₂	(67)	1065
	HCEC H O N CO ₂ Bn	(t-C4H9)2Cu(CN)Li2	THF, -78°, 3 min	C_4H_{9}	(60)	1066
	of CollaCh3-p	(E)-(n-C ₃ H ₁₁ CH=CH) ₂ - Cu(CN)Li ₂	-	n-C ₅ H ₁₁	(75) CH ₃ -p	1067
C,	பீ	(C ₆ H ₅) ₂ Cu(CN)Li ₂	1. Ether, BF ₃ , -78 to -50° 2. AcCl, Py	C ₆ H ₃ (CH ₂) ₃ OAc	(87)	498
	$\begin{array}{c} & & & \\ & & & \\ & & & \\ OC - Fe^{+} - II \\ OC_{6}H_{5}O)_{3}P \\ (C_{6}H_{5}O)_{3}P \\ CH_{3} \end{array} $	(C ₆ H ₅) ₂ Cu(CN)Li ₂	THF, -78 to 20°		(93)	1068
	×	(CH2=CH)2Cu(CN)Li2	THF, -78 to 20°		(46)	1069
	о Sn(C ₄ H ₉ - <i>n</i>) ₃ HO————————————————————————————————————	[C ₆ H ₅ (CH ₃) ₂ Si] ₂ Cu(CN)Li ₂ (1.5 eq)	THF, 0°, 4 h	C ₆ H ₅ (CH ₃) ₂ SiO Si(Ct	n)3 I3)2C6H	1070 Is
	СН20Н	(CH ₃) ₂ Cu(CN)Li ₂	THF, -20°, 2 h		(92)	1071
	O CH ₂ Br	(n-C3H7)2Cu(CN)Li2 (3 eq)	Ether, 0°, 1 h		(65)	1072
	TBDMSO	(CH2=CH)2Cu(CN)Li2	THF, -78 to -13°	TBDMSO	()	1073
C,	<u>~</u>	(<i>n</i> -C ₄ H ₉) ₂ Cu(CN)Li ₂	Ether, BF ₃ , -78 to -70° ,	л-С4Н9 ОН	(100)	498

TABLE IX. REACTIONS OF HIGHER-ORDER CUPRATES

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		Ref
	(C4H3O)2Cu(CN)Li2 (BF3Et2O)	THF, -78°, 2 h	HOLO	(90)	1074
CI(CH ₂) ₃	(CH ₂ =CH) ₂ Cu(CN)Li ₂ (4 eq)	THF, 20°, 24 h	CH ₂ =CH(CH ₂) ₃	(58)	107:
OMs	(n-C4H9)2Cu(CN)Li2 (1 eq BF3'Et2O)	THF, -78°, 2 h	HO C_4H_9-n	(70)	107
CoH5 0 0	CH3 (CH3)2Cu(CN)Li2	-	C ₆ H ₅ O OCH ₃	(84)	107
CH302CCH2	[CH ₂ =C(CH ₃)] ₂ Cu(CN)Li ₂	Ether, -40 to 0° , 5 h	i.	(81)	800
\bigcirc	n-C ₃ H ₇ (C ₄ H ₃ S)Cu(CN)Li ₂	THF, ether, 0°, 1 h	OH C ₃ H ₇ -n	(55)	490
	(E)- $(n$ -C ₄ H ₂ CH=CH) ₂ Cu(CN)Li ₂	Ether, -78 to -50° , 1 h	OH C4H9-n	(81)	498
\bigcirc	(n-C4H9)2Cu(CN)Li2	THF, -78° 1 h	C4Hg-n	(90)	494
Å	[C ₆ H ₅ (CH ₃) ₂ Si] ₂ Cu(CN)Li ₂	THF	SirCH-J-C.H.	(>75)	107
HOCH2 C3H7	(CH ₃) ₂ Cu(CN)Li ₂ -i (4 eq)	1. Ether, -30° 2. NaIO4, H ⁺	ОН	(82)	10
	(CH2==CH)2Cu(CN)Li2 (4 eq)	THF, -78 to 0°, 1 h	O TsNH	(80)	10
OMs OMs OBn OBn	2CH3 " (n-C4H4)2Cu(CN)Li2 (3 eq)	THF, hexane, BF ₃ ·Et ₂ O, — 78°, 30 min	OMs C4H9-n CO2CH3 OBn OBn	(94)	49
CH ₃ CO ₂ i-C ₃ H ₇	[C ₆ H ₅ (CH ₃) ₂ Si] ₂ Cu(CN)Li ₂ (3 eq P(C ₆ H ₅) ₅)	THF, ether, 0°, 3 h	Si(CH ₃) ₂ C ₆ H ₅	(87)) 8
TBDMSO OH BnO	O (CH ₂ =CH) ₂ Cu(CN)Li ₂ (10 eq)	Ether, THF, 0°, 4 h	Bno	(93)) 1

TABLE IX.	REACTIONS OF HIGHER-ORDER CUPRATES (Continued)				
	Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)	Re
----	--	--	--	---	------------
	O ₂ CCH ₃	$[C_{6}H_{5}(CH_{3})_{2}Si]_{2}Cu(CN)Li_{2}$ (3 eq P(C_{6}H_{5})_{3})	THF, ether, 0°, 3 h	Si(CH ₃) ₂ C ₆ H ₅ + <i>i</i> -C ₃ H ₇ + Si(CH ₃) ₂ C ₆ H ₅ +	824 87)
	но	(CH ₃) ₂ Cu(CN)Li ₂	Ether, - 78 to 20°, 15 h		30) 108
C,	Br of o	(CH ₃) ₂ Cu(SCN)Li ₂	1. Ether, HMPA, -20°, 1 h 2. CH ₃ I, -50°	X mo	71) 108
	$n-C_6H_{13}$ $for Si(CH_3)_2OC_3H_7-i$	(n-C4H9)2Cu(CN)Li2	 THF, hexane, BF₃:Et₂O, -78°, 2 h H₂O₂, KF, KHCO₃, CH₃OH, THF, 25°, 12 h 	$n-C_6H_{13}$ $H_{C_4H_9-n}$ (>6	52) 627
	CH ₂ Br	(n-C4H9)2Cu(CN)Li2 (1.7 eq)	THF, 0°, 3.5 h	$C_{5}H_{11}-n$ (9	91) 107
C,	CH ₃ CON=C(C ₆ H ₅)CONHOCH ₃	(<i>n</i> -C ₄ H ₉) ₂ Cu(CN)Li ₂ (2.5 eq)	THF, -78°, 30 min	CH ₃ CONHC(C ₄ H ₉ -n)- (C ₆ H ₅)CONHOCH ₃ (7	108 75)
	COC ₂ H ₅	(<i>n</i> -C4H9)2Cu(CN)Li2	THF, -20°, 40 h	C_4H_9-n COC ₂ H ₅ (7)	70) 108
	C ₆ H ₁₁ O	(CH ₃) ₂ Cu(CN)Li ₂ (4 eq)	THF, TMEDA, 0°, 6 h		108 -)'
	C≡CCH3	t-C₄H ₉ [CH ₃ S(O)CH ₂]Cu(CN)Li ₂ (1.1 eq)	THF, -78 to 0°, 1.5 h	$OH = 0H$ $91:9$ $OH = C_4H_9-t \qquad (9)$	97) 273
	C ₆ H ₅ S r (CH ₂) ₂ Br	(n-C4H9)2Cu(CN)Li2	THF, -30°, 20 h	C ₆ H ₅ S rC ₆ H ₁₃ -n (7	74) 107
	n-C ₆ H ₁₃ TMS O ₂ SCF ₂	$(n-C_3H_{11}C \equiv C)_2Cu(CN)Li_2$	THF, 0°, 30 min	$\begin{array}{c} \xrightarrow{n-C_6H_{13}} & CH_2C \equiv CC_5H_{11}-n \\ TMS \\ Sn(C_1H_{2}-n)_2 \end{array} $	85) 103
	C	[(n-C4H9)3Sn]2Cu(CN)Li2	THF, -20°, 2 h		91) 108

TABLE IX. REACTIONS OF HIGHER-ORDER CUPRATES (Continued)

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%) Re
0 CO ₂ C ₂ H ₅	(CH2=CH)2Cu(CN)Li2	Ether, -70 to 20°, 12 h	$\begin{array}{c} O \\ CO_2C_2H_5 \\ O \end{array} $ (92) 108
	Br $\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	THF, -50°, 3 h	COTMS (93) 107
-	(TMS) ₂ Cu(CN)Li ₂	THF, -23 to 20°, 1 h	(70) 108
C ₁₁	(C2H3)2Cu(CN)Li2	THF, -78 to 0°, 6 h	$\bigcup_{C_4H_9-t}^{OH} C_2H_5 $ (98) 494
C₁₂ O₂CC6H5 C≷CH	(t-C4H9)2Cu(CN)Li2	Ether, -78°	C≈CHC4H9-1 (89) 109
Си Ср Fe(CO)—III (C ₆ H ₅ O) ₃ P С	5 BF ₄ - (CH ₃) ₂ Cu(CN)Li ₂	THF, -78°, 1 h	Cp Fe(CO) (90) 109 (C ₆ H ₅ O) ₃ P C ₆ H ₅
	H ₅ (t-C ₄ H ₉) ₂ C(CN)Li ₂ (2 eq)	Ether, - 78 to 20°	(79) 105 CrHert
	[C ₆ H ₅ (CH ₃) ₂ Si] ₂ Cu(CN)Li ₂	THF, -50°, 3 h	Si(CH ₃) ₂ C ₆ H ₅ C ₆ H ₅ (56) 105
	[C ₆ H ₅ (CH ₃) ₂ Si] ₂ Cu(CN)Li ₂ CH ₃	THF, -50°, 3 h	C ₆ H ₅ C Si(CH ₃) ₂ C ₆ H ₅ (39) 109
C ₁₇ AcO	[C ₆ H ₅ (CH ₃) ₂ Si] ₂ Cu(CN)Li ₂ OAc	-	$C_6H_5(CH_3)_2Si$ C_6H_5 OAc (86) 105
	CC ₆ H ₅ (<i>t</i> -C ₆ H ₉) ₂ Cu(CN)Li ₂ OTBDMS	Ether, -78°	C4H9-1 C (94) 10 (CH ₂) ₂ OTBDMS

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
Contraction of	H (<i>n</i> -C4H9)2Cu(CN)Li2	THF, -20°	HO n-C ₄ H ₉ O	(89)	1096
C_{∞} $C_{6}H_{5}CO_{2}$ H_{17} $C_{8}H_{17}$ H_{17} H_{1	r (s-C4H9)2Cu(CN)Li2	Ether, -78°, 6 h	$C_{4}H_{9}-s$	(70)	1097
	B. Conjugate	Addition Reactions			
C ₂ [2,4,6-(CH ₃) ₃ C ₆ H ₂] ₂ BC= 	=CH ₂ (n-C ₄ H ₉) ₂ Cu(CN)Li ₂	Ether, -78 to 20°	[2,4,6-(CH ₃) ₃ C ₆ H ₂] ₂ BCHC ₅ H ₁₁ -n TMS	(66)	1098
C ₃ O ₂ CC ₄ H ₉ -t Ts	(C4H3O)2Cu(CN)Li2 (2 eq)	THF, -78°, 30 min	$ \begin{array}{c} $	(62)	1099
C, CH3C=CCO2C2H3 C	(TMS)2Cu(CN)Li2	THF, HMPA, – 78°, 24 h	(CH ₃) ₃ Si CH ₃	(91)	1100
Å	(t-C4H9)2Cu(CN)Li2, CO	THF, ether, pentane, - 110 to 25°	ů,	(82)	1101
C2H3CH=CHCHO	(s-C4H9)2Cu(CN)Li2, CO	THF, ether, pentane, -110 to 25°	s-C ₄ H ₉ COCH(C ₂ H ₅)CH ₂ CHO	(76)	1101
Сн₃о	(CH ₃) ₂ Cu(CN)Li ₂	THF, -78°, 30 min	CH30	(76)	901
c,	C ₆ H ₅ (C ₄ H ₃ S)Cu(CN)Li ₂	Ether, - 78°, 20 min	C ₆ H ₅	(80)	496b
	(s-C4H4)(CH3)Cu(CN)Li2	THF, -78°, 30 min	C ₄ H ₉ -s	(97)	499
	i-C₃H⁊CH(OMOM)Cu(CN)Li₂ ^d	THF, TMSCl, -78°, 5 h	омом	(96)	361

TABLE IX. REACTIONS OF HIGHER-ORDER CUPRATES (Continued)

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
	[C ₄ H ₅ (CH ₃) ₂ Si] ₂ Cu(CN)Li ₂	1. THF, −78°, 2 h 2. CH ₃ I, −78°, 4 h	Si(CH ₃) ₂ C ₆ H ₅	(64)	1102
	(C ₆ H ₅) ₂ Cu(CN)Li ₂ (2 eq)	 Ether, -60°, 1 h C₆H₃SeBr, THF, -60°, 30 min 	SeC ₆ H ₅ C ₆ H ₅ cis:trans 60:40	(65)	1103
	(t-C4H9)2Cu(CN)Li2, CO	THF, 0°, 30 min	COC4H9-1	(94)	1104
	(s-C4H9)2Cu(CN)Li2, CO	THF, -110°, 30 min	COC Her	(94)	1104
H C2H5O2C SC2H5	(CH ₃) ₂ Cu(SCN)Li ₂	Ether, -78°	$C_{2}H_{3}O_{2}C$ E:Z 99:1	(99)	519
сн,со	$\left(\begin{array}{c} \end{array} \right)_2 - Cu(CN)Li_2$	Ether, - 100°	CH ₃ CO anti:syn 88:12	(73)	1105
COCH3	(<i>n</i> -C ₄ H ₉) ₂ Cu(CN)Li ₂ (2 eq)	Ether, BF ₃ -Et ₂ O, -70°, 1 h	<i>n</i> -C ₃ H ₁₁ C(CH ₃) ₂ CH ₂ COCH ₃	(55)	1106
I(CH ₂) ₃ C=CCO ₂ C ₂ H ₅	(CH ₃) ₃ Sn(C ₄ H ₃ S)Cu(CN)Li ₂	THF, -78 to -48°, 3 h	(CH ₃) ₃ Sn CO ₂ C ₂ H ₅	(62)	1107
$\langle \rangle$	[C ₆ H ₅ (CH ₃) ₂ Si] ₂ Cu(CN)Li ₂	1. THF, -78°, 2 h 2. CH ₃ I, -78°, 2 h	Si(CH ₃) ₂ C ₆ H ₅	(62)	1108
C ₆ H ₅ CH ₂ N	[C ₆ H ₅ (CH ₃) ₂ Si] ₂ Cu(CN)Li ₂	THF, -78°, 14 h	C ₆ H ₅ CH ₂ N Si(CH ₄) ₂ C ₆ H ₅	(73)	1108
(CH30)2CHCH2	O2C2H5 [C6H5(CH3)2Si]2Cu(CN)Li2	-	C ₆ H ₅ (CH ₃) ₂ Si CO ₂ C ₂ H ₅ (CH ₃ O) ₂ CHCH ₂ svn: anti 92:8	(89)	1094
L	[C ₆ H ₅ (CH ₃) ₂ Si] ₂ Cu(CN)Li ₂	THF, -78°, 2 h	Si(CH ₃) ₂ C ₆ H ₅	(85)	1102
CO ₂ CH ₃	[C ₆ H ₅ (CH ₃) ₂ Si] ₂ Cu(CN)Li ₂	THF, -23°, 3 h	cis: trans 75:25 CO ₂ CH ₃ Si(CH ₃) ₂ C ₆ H ₅	(—)	1109

TABLE IX. REACTIONS OF HIGHER-ORDER CUPRATES (Continued)

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
Ĵ	(C ₆ H ₅) ₂ Cu(CN)Li ₂	Ether, -78°, 1 h		(82)	499
OTBDMS CO2CH3	(<i>n</i> -C4H9)2Cu(CN)Li2	THF, BF3*Et2O, -78°, 30 min	98.5:1.5 OTBDMS CO ₂ CH ₃ CH ₃ OC(C ₄ H ₉ -n	(70)	817
O O O O O O CH ₃	(CH ₃) ₂ Cu(CN)Li ₂	Ether, -78°, 4 h	OCH3	(93)	1110
	(C4H3O)2Cu(CN)Li2 (2 eq)	THF, BF3*Et2O (2 eq), -78 to 35°, 2 h	Å.	(70)	1074
	[C ₆ H ₅ (CH ₃) ₂ Si] ₂ Cu(CN)Li ₂	THF, -23°, 3 h	CO ₂ C ₂ H ₅ CO ₂ C ₂ H ₅ Si(CH ₃) ₂ C ₆ H ₅	(70)	1109
C ₆ H ₅ SO ₂ C ₆ H ₄ Cl	-p (n-C4H9)2Cu(CN)Li2	Ether, 0°, 1 h	C ₆ H ₅ SO ₂ C ₆ H ₄ Cl-p C ₄ H ₅ -n	(72)	499
i-CaH-O	CH3 (n-C4H9)2Cu(SCN)Li2	Ether, -60°	i-C ₃ H ₇ O (1)	100)	519
n-C₄H₄C≡CCOCF₃	(n-C4H9)2Cu(CN)Li2	Ether, -78°, 2 h	$E:Z 92:8$ $(n-C_4H_9)_2C=CHCOCF_3$	(55)	1111
n-C ₃ H ₁₁ CHO	$\begin{pmatrix} MOMO \\ i-C_3H_7 \end{pmatrix}_2 Cu(CN)Li_2 d$	THF, TMSCI, -78 to 20°	$i-C_3H_7$ CHO + $C_5H_{11}-n$ syn:anti 92:9	(44)	1112
			$i-C_{3}H_{7}$	(27)	
c,	CH2=CH(C4H3S)Cu(CN)Li2	Ether, THF, BF3, -78 to 0°, 2 h		(98)	496a
	(C ₆ H ₅) ₂ Cu(CN)Li ₂	Ether, THF, BF ₃ , -50 to 15°, 45 min		(95)	496a
	<i>n</i> -C ₄ H ₉ (CH ₃ SOCH ₂)Cu(CN)Li ₂ (2.2 eq)	Ether, - 78 to 0°, 4 h	С.Но-л	(95)	273

Substrate	Organocuprate	Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
	(TMS)2Cu(CN)Li2	THF, ether, HMPA, -23 to 0°, 1.5 h	TMS	(91)	1115
	(CH3)3Sn(C4H3S)Cu(CN)Li2 (1.5 eq)	THF, −20°, 4 h	Sn(CH ₃) ₃	(87)	1107
(C ₆ H ₁₁) ₂ NSO ₂ CH ₂ C ₆ H ₅ 0	[C ₆ H ₅ (CH ₃) ₂ Si] ₂ Cu(CN)Li ₂	THF, -78°	$\begin{array}{c} C_6H_5 \\ C_6H_5(CH_3)_2Si \\ 95\% \text{ de} \end{array}$	(67)	731
Co ₂ CH ₃	[C ₆ H ₅ (CH ₃) ₂ Si] ₂ Cu(CN)Li ₂	1. THF, −23° 2. CH ₃ I, −23°, 1 h	C ₆ H ₅ (CH ₃) ₂ Si C ₆ H ₅ C ₆ H ₅	(88)	1113
	(CH2=CH)2Cu(CN)Li2	 Ether CH₃I, HMPA CuSO₄, H₂O, CH₃OH NaOCH₃, CH₃OH 	cis:trans 78:22	(60)	1114
C ₆ H ₅ CO ₂ CH ₃	C ₆ H ₅ (CH ₃) ₂ Si(CH ₃)Cu(CN)Li ₂	THF, -23 to 0°, 2 h	Si(CH ₃) ₂ C ₆ H ₅ C ₆ H ₅ C ₆ H ₅	(73)	1115
C10					
C,H,CH=CHCOCH,	(<i>n</i> -C ₄ H ₉) ₂ Cu(CN)Li ₂ [C ₆ H ₅ (CH ₃) ₂ SiCl]	THF, -75°	C ₆ H ₅ CHCH ₂ COCH ₃ Si(CH ₃) ₂ C ₆ H ₅	(65)	1116
C ₆ H ₅ C=CCOCF ₃	(CH ₃) ₂ Cu(CN)Li ₂	-	CocF3 E:Z 71:29	(51)	1117
CHO	[C ₆ H ₅ (CH ₃) ₂ Si] ₂ Cu(CN)Li ₂	THF	Si(CH ₃) ₂ C ₆ H ₅	(70)	1118
	$\begin{pmatrix} MOMO \\ \downarrow \\ \downarrow \\ 2 \end{pmatrix}$ Cu(CN)Li ₂	THF, TMSCI, -78 to 20°		(94)	502
	(n-C4H9)2Cu(CN)Li2	THF, 0°, 1 min	HO CH ₃ O ₂ C C ₄ H ₉ -n	(66)	1119
0	(n-C3H7)2Cu(CN)Li2	Ether, -25°, 2 h	0 C ₃ H ₇ -n	(85)	499
C_6H_5 C_2H_3 C_2H_5	[C ₆ H ₅ (CH ₃) ₂ Si] ₂ Cu(CN)Li ₂	1. — 2. CH ₃ I	Si(CH ₃) ₂ C ₆ H ₅ C ₆ H ₅ C ₂ H ₅	(95)	1120

TABLE IX. REACTIONS OF HIGHER-ORDER CUPRATES (Continued)

TABLE IX. REACTIONS OF HIGHER-ORDER CUPRATES (Continued)

 $Ms = CH_3SO_2$. $Tf = CF_3SO_2$.

' The yield was reported in the 85-95% range.

^d MOM = methoxymethyl.

482

Substrate	Copper Reagent	Reaction Conditions	Product(s) and Yield(s) (%)	1	Ref
	A. Su	bstitution Reactions			
CH2=CHCH2Br	$\begin{pmatrix} 0^{-} \\ 0^{-} \\ CH_{z}=C=C=C^{2}Cu^{+} \\ 0 \end{pmatrix}$	1. THF, -78°, 1 h 2. TMSCl, (C ₂ H ₅) ₃ N	CH2=C=C(CO2TMS)CH2CH=CH2	(60)	112
	$ \begin{bmatrix} 0^{-1} \\ 0^{-1} \\ 0^{-1} \\ 0^{-1} \\ 0^{-1} \\ 0^{-1} \\ 0^{-1} \end{bmatrix} Na^{+} $	THF, - 15 to 25°	С ₄ Н ₂ -я	(92)	527
	(1 eq CuBrDMS) $n-C_6H_{13}$ (CH ₃) ₃ Sn $E(C_2H_5)_2C_4H_{9}-n$ Li ⁺ (1 eq CuBrDMS)	 THF, HMPA, P(OC₂H₅)₃, -80 to 20° NaOH, H₂O₂ 	n-C ₆ H ₁₃ (CH ₃) ₃ Sn	(80)	112
	$n-C_6H_{13}C = CCH_2B^-(C_6H_{13}-n)_2Li^+$	THF, -78 to 20°	<i>n</i> -C ₆ H ₁₃ C=C(CH ₂) ₂ CH=CH ₂	(62)	112
	(1 eq CuI) OCH_3 THPO(CH ₂) ₄ (<i>n</i> -C ₄ H ₉) ₃ Sn -B Li ⁺	THF, -78°, 1 h	THPO(CH ₂) ₄ (n-C ₄ H ₉) ₃ Sn	(62)	112
HC=CCH2OH	(1 eq CuBrDMS) (CF ₃) ₂ CuZnI	THF, ultrasound, 2 h	CF3 OH E:Z 32:68	(61)	11
C4 THPOCH2 CH2Br	C ₆ H ₅ CH ₂ O(CH ₂) ₂ C=CLi	THF, -60 to 20°, 12 h	THPOCH2 C≡C(CH2)2OBn	(75)	11
л-С₄Ны	ALT Lit	THF, - 78 to 20°, 18 h	n-C6H13 C6H9-n	(82)	11
C,	$(1 eq Cul·P(OC_2H_5)_3)$				
Br(CH ₂) ₅ Br	C ₄ H ₃ CH=NCH(CH ₃)CO ₂ CH ₃ (LDA, cat, Li ₂ CuCl ₄)	THF, 20°, 16 h	C ₆ H ₅ CH=NC(CH ₃)(CO ₂ CH ₃)(CH ₂) ₅ Br	(90)	11
(CH ₃) ₂ C=CHCH ₂ Br	IZn(CH ₂) ₃ CO ₂ C ₂ H ₅ (15% CuCN)	THF, CH ₃ CON(CH ₃) ₂ , 25°	(CH ₃) ₂ C=CH(CH ₂) ₄ CO ₂ C ₂ H ₅ + CH ₂ =CHC(CH ₃) ₂ (CH ₂) ₃ CO ₂ C ₂ H ₅	(15) (76)	53
c,	n-C3H7(C4H3S)Cu(CN)LiMgBr	THF, - 78 to 20°, 9 h	$O_{3}CC_{4}H_{r}$ $(52) + O_{1}C_{3}H_{7}-n}$ $(52) + O_{1}C_{2}O_{1}$ $(52) + O_{1}C_{2}O_{1}$	(78)	535
\bigcirc	C ₆ H ₅ CO ₂ Na (1 eq CuCN)	THF, -78 to 20°, 14 h	OH OH	(83)	11
С,Н,І	F ₆ ZnI (CuBr)	DMF, 20°	F6 C6Hs	(52)	11
	a~~p			(75)	11

TABLE X. REACTIONS OF OTHER ORGANOCOPPER SPECIES

Substrate	Copper Reagent	Reaction Conditions	Product(s) and Yield(s) (%)		Refs
C,					
	(t-C₄H₀O)₃LiAlH (1.5 eq CuBr)	THF, -23°, 1.5 h	N CH	(45)	1130
C02C6n5	(r-C ₄ H ₉ O) ₃ LiAlH (3 eq) (4.4 eq CuBr)	THF, -23°, 1.5 h	" "	(45)	850
ECO2H	K(s-C4H9)3BH (0.5 eq Cul)	THF, -50°, 2 h, 20°, 3 h	CO ₂ H	(86)	113
C ₂ H ₅ CO(CH ₂) ₄ CO ₂ CH=N ⁺ - (CH ₃) ₂ Cl ⁻	Li(t-C4H9O)3AlH (10% Cul)	THF, CH ₃ CN, -78°, 10 min	C ₂ H ₅ CO(CH ₂) ₄ CHO	(71)	113
C ₆ H ₅ (CH ₂) ₂ COCI	OC ₂ H ₅ OTMS (ZnCl ₂ , CuI)	Ether, HMPA	C ₆ H ₅ (CH ₂) ₂ CO(CH ₂) ₂ CO ₂ C ₂ H ₅	(89)	541
	(CH ₃) ₅ Cu ₃ Li ₂	Ether	$\succ $	(82)	113
C10 n-C10H21Cl	Li ₄ CuH ₅	THF, 25°, 24 h	<i>n</i> -C ₁₀ H ₂₂	(99)	542
CH ₃ CO ₂	n-C4H9ZnCl (5% CuBrDMS)	THF, 20°	CH ₃ CO ₂ E:Z 50:50	(65)	114
TCeHs BF4-	$ \begin{array}{c} \overline{B}(C_2H_5)_3Li^+\\ N \\ NC_4H_{5^{-1}}\\ (1.1 eq CuCN) \end{array} $	THF, -20 to 20°, 12 h	$C_{a}H_{g}-i$	(61)	114
	(n-C4H9)3Cu2Li	Ether, DMS, -25°, 1 h	HO ₂ C $n-C_6H_{13}$ O $C_6H_{9}-n$ 97% de	(68)	114
	[CH3(TMS)3AlLi (10% CuCN)]0.5 eq	THF, ether, pentane, 0°,	COTMS	(52)	114
	B. Co	onjugate Addition Reactions			
C4 CH3CH=CHCO2CH2C6H5	[(C ₆ H ₅) ₃ P-CuH] ₆ (0.24 eq)	C ₆ H ₆ , H ₂ O (0.24 eq), 25°, 30 min	n-C3H7CO2CH2C6H5	(95)	553
CH2=CHCOCH3	$t-C_4H_9$ $Zr(\eta^5-C_5H_5)_2Cl$ (LiI, CuO ₃ SCF ₃)	THF, -78 to 20°, 16 h	r-C4H9 COCH3	(73)	114
C, CO ₂ CH ₃	(i-C₄H ₉)₂AlH (10% CH₃Cu)	THF, HMPA, -50°, 1.5 h	C ₂ H ₅ CH ₂ CO ₂ CH ₃ OP(O)(OC ₃ H ₄) ₅	(80)	542
\mathbf{Q}	LiAID. (1 eq CuI)	1. THF, HMPA, -78°, 1 h 2. (C ₂ H ₅ O) ₂ P(O)Cl		(67)	114

Substrate	Copper Reagent	Reaction Conditions	Product(s) and Yield(s) (%)		Ref
	Cu(CN)LiMgBr	THF, -78°, 2.25 h	СH ₂₎₂ -С	(85)	535
	$COC_{g}H_{11}$ $CH_{2}Cu(CN)ZaBr$ $(TMSCI, 2 eq)$	THF, -70 to -20°, 15 h		(95)	1146
СНО	n-C3H7C=CCu(H)Li	THF, -78°, 30 min	CHO CHO	(86)	544
n-C ₃ H ₇ CH=CHCHO	LIAIH, (10% Cul)	THF, HMPA, -78°, 1 h	$n-C_{2}H_{11}CHO$ (63) + $n-C_{3}H_{7}CH=CHCH_{2}OH$ (12)	(75)	114
L	(i-C₄H9)2AlH (10% CH3Cu)	THF, HMPA, -50°, 30 min	Ļ	(73)	547
	OC ₂ H ₅ OTMS (5% CuBr-DMS) ZnCl ₂	Ether, HMPA, 20°, 4 h	(CH ₂) ₂ CO ₂ C ₂ H ₅	(92)	541
Сно	(CH3)5Cu3Li2	 Ether-pentane (1:1), -75 to 0° TMSCI 	OTMS	(88)	425
(CH2),O-CCH4	NC(CH ₂) ₃ Cu(CN)ZnI (3 eq BF ₃ ·Et ₂ O)	THF, -78 to -30°		(79)	1148
N	NaAl[O(CH2)2O]2H OC4H9-5 (0.5 eq CuBr)	THF, C ₆ H ₆ , -78 to 20°, 6 h	(CH ₂) ₃ O ₂ CCH ₃	(92)	1067
° CH3C=C(CH2)4C=CCOC3H7i	(i-C₄H ₉) ₂ AlH (2 eq) (0.1 eq CH ₃ Cu)	THF, HMPA (6 eq), -50°, 3.5 h	CH3C=C(CH2)4CH=CHCOC3H7i 40:60 E:Z	(63)	1149
u	, , , , ,				
(E)-t-C4H9CH=CH2COC4H9-t	Li ₂ CuH ₃	Ether, 25°, 48 h	r-C4H9(CH2)2COC4H9-1°	(93)	543
COC4H9-1	LILUNS	1HF, 20 , 24 ll	он	(95)	545
и странование странов	(CH ₃) ₃ Cu ₂	1. Ether, -75 to -20° 2. H ⁺ , H ₂ O	CH ₂ CH0 [°]	(86)	425

TABLE X. REACTIONS OF OTHER ORGANOCOPPER SPECIES (Continued)

"The 1,2-addition product (6%) was also obtained. "The 1,4-addition product (5%) was also obtained. "The 1,2-addition product (2%) was also obtained.

TABLE XI. ORGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL PRODUCTS

Substrate	Organocopper Reagent	Reaction Conditions	Product(s) and Yield(s) (%) (Target Molecule)	Ref
CI OC ₂ H ₅ OC ₂ H ₅ O ₂ CHN-0C ₂ H	H5 (TMS)2Cu(CN)Li2	Ether, THF, HMPA, -78°, 12 min	$\begin{array}{c} TMS & OC_2H_5 \\ OC_2H_5O_2CHN- & OC_2H_5 \end{array} $ (84)	116
THPOCH2C=CCO2CH3	(CH2—CH)2CuLi	THF, -78°, 4.25 h	[Gelsemine] THPOCH ₂ CH ₂ O ₂ C (100)	116
	(CH ₃) ₂ CuLi	THF78°	[Heliotridine, Retronecine]	116
ON OTS	(n-C ₄ H ₉) ₂ CuLi	Ether, DME, -40°, 16 h	$[(-)-\alpha-\text{Kainic acid}]$ $O = \begin{bmatrix} C_5H_{11}-n \\ H \\ (88) \end{bmatrix}$ $((-)-\text{Indolizidine 209B}]$	116
C6H3SCOCH2 H	(CH ₃) ₂ CuLi	Ether, THF, -20°, 5 min	CH ₃ COCH ₂ H N N (84)	116
NC(CH ₂) ₂	CH ₂) ₃ CH ₂ Cu(SC ₆ H ₅)Li	1. THF 2. CuCl ₂ , THF, H ₂ O, 25°	[Isoretronecanol] CH ₂ CO(CH ₂) ₃ CH=CH ₂ NC(CH ₂) ₂ [Lycodine]	116
N N CH ₂ Br	NCCH2Cu (5 eq)	THF, −40 to −20°, 1 h	(CH ₂) ₂ CN	75
TSOCH ₂ H H L H CH ₂ C ₆ H ₅	(n-C4H9)2CuLi CH2)2CO2C2H5	Ether, -20°	(91)	55
		R Ternenes	[Pernyarogepnyrotoxin]	
		a. Grignard Couplings		
CH ¹	CH ₂ —CHCH ₂ MgBr (3 eq) (25% Cul)	 Ether, reflux 3 h C₂H₂O₄, H₂O, SiO₂, CH₂Cl₂, 25°, 14 h 	(82)	116
ý	BrMg (CH ₂) ₂ Cl (30% CuBrDMS)	1. THF, ether, BF ₃ · Et ₂ O, -78°, 2 h 2. KH, THF, 25°	[12-Acetoxysinularene]	116
BnO	Cl (Li ₂ CuCl ₄)	THF, 0°, 0.5 h	[(±)-Anhydro-Oplopanone]	116

TABLE XI.	ORGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL PRODUCTS (Continued)

TABLE XI.	ORGANOCOPPER	COMPOUNDS IN	SYNTHESIS OF	NATURAL	PRODUCTS	(Continued)
-----------	--------------	--------------	--------------	---------	----------	-------------

Substrate	Organocopper Reagent	Conditions	(Target Molecule)	Ref
Ĵr	CH2=C(CH3)MgBr (CuI)	1. THF 2. C ₆ H ₅ SeCH ₂ CHO	(-)	118
CH3O2C	MgBr (—% CuI)	THF, -50°, 2 h	(±)-Coriamytin]	118
	(0.25 eq CuBrDMS)	THF, DMS, -78 to 0°, 2.5 h		118
H H OS	CH _z =CH(CH ₂) ₂ MgBr (—% CuBrDMS)	THF, DMS, -78°, 2 h	$ \begin{array}{c} $	118
	<i>թ</i> -CH₃C₅H₄MgBr (—% CuBrDMS)	THF, HMPA, TMSCI	TMS [(+)-a-Curcumene] (96)	118
<i>←</i> ~~~~°	$P(O)(OC_2H_5)_2$ CH_2MgBr (10% CuI)	THF	(81) [Dendrolasin]	118
	$S \rightarrow N^{-N}$ (cat. CuBr)	THF, -78°	[Dendrolasin] (86)	118
∇	(10% Cul)	1. Ether, DMS, 0-20°, 1 h 2. CICO ₂ CH ₃ , 0-20°, 5 h	(75) OCO ₂ CH ₃ [Desmethylaflavinine]	118
g L	(i-C₃Hȝ)₃SiC═CCH₂MgBr (CuI) [∽] OTBDMS	1. THF, −20°, 3 h 2. (<i>n</i> -C ₄ H ₉) ₄ NF, THF	С ⁵ СSi(C ₃ H ₇ -i) ₃ (62)	119
×	CH ₂ —C(CH ₃)MgBr (10% Cul)	THF, -45 to 25°, 12 h	[Desoxyasperdiol] HO O (89) [7(8)-Desoxyasperdiol]	117
H	(CH ₃) ₂ C=CHCH ₂ MgCl (n-C ₂ H ₂ C=CCu)	1. Ether, -20°, 2.5 h 2. THF, H ₂ O, AcOH	(38)	11

Substrate	Organocopper Reagent	Reaction Conditions	Product(s) and Yield(s) (%) (Target Molecule)	Refs
CH2=CH(CH2)2I	n-C ₅ H ₁₁ MgBr (10% CuI)	THF, -30 to 25°, 2 h	n-C ₅ H ₁₁ [Dihydrojasmone] (86)	1192
54534	BrMg (4% Li2CuCl4)	1. THF, 0°, 2 h 2. H ⁺ , CH ₃ OH, H ₂ O	[Mammalian dolichols]	1193
MOMOCH ₂	CH2=CHMgBr Cul-P[N(C2H5)2]3	THF, -78°, 2 h	MOMOCH ₂ (61)	1194
	CH2=CHMgBr (Cul)	-	$ \begin{array}{c} $	1195
Å	CH2—CHMgBr (Cul)	THF	(20-30)	1196
Сосна	(cat. CuCl)	THF, 20°, 11 h	[β-Elemenone] COCH ₃ (25) [Furopelargone A]	1197
$\langle \downarrow \rangle$		1. THF, ether, DMS, -78°, 20 h 2. CH ₃ I, HMPA, 25°, 24 h	(66)	1198
o to	CH ₂ MgCl (6% Cul)	THF, -30°, 1 h	((-)) = H (84) $((+) + Hermandulcin]$	119
CICH2 (CH2)2SC6H5	CH ₂ MgCl (10% CuI)	THF, α,α'-dipyridyl, 0°, 1 h	[β-Ionone] (95)	1200
$\not\Rightarrow$	(CH ₃) ₂ CuMgI	Ether, 20°, 24 h	(70)	1201
φ	$\left(\sub{O}_{O} - (CH_2)_2 \right)_2 CuMgBr$	THF, ether, DMS, -78 to -5° , 15 h	$(CH_2)_{2,5} $ (68)	1202
JH0 H	CH ₂ MgBr (10% CuI)	Ether, 0-20°, 20 h	$HO_{(CH_2)_2} (40)$	802
			[Isomarrubiin]	

TABLE XI. ORGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL PRODUCTS (Continued)

Substrate	Organocopper Reagent	Reaction Conditions	Product(s) and Yield(s) (%) (Target Molecule)		Refs.
	(C ₂ H ₅)CuMgBr	1. THF, -70° 2. 3 N HCl, 0°	[cis-Jasmone]	(73)	1203
tota	CH ₂ MgCl CH ₂ OTHP (-% Li ₂ CuCl ₄)	()	CH ₂ OTHP	(75)	1204
CH ₂ Br	-0- 2Cu ⁺	1. THF 2. CH ₂ N ₂		(61)	1205
TMS	CH3MgI (cat. CuBrDMS)	THF, HMPA, TMSCl, -78°, 30 min	TMS [(-)-Methyl citronellate]	(92)	1206
° CeHs	CH3MgBr (CuCl)	Ether	O [Muscone]	(67)	1207
Ċ	CH₂MgCl (1 eq CuCN)	THF, -78 to 20°, 4 h		(62)	1208
(CH ₂) ₂ OC ₆ H ₅	CHz=CHMgBr (0.55 eq CuBrDMS)	THF, DMS, -30°, 1 h	[Nakafuran 9] $(CH_2)_2OC_6H_5$	(52)	1209
0 Br	(CuBr)	Ether, THF, -20 to 20°	(3-Oxosilphinene)	(100)	1210
Î.	Cl(CH ₂) ₃ MgBr (CuBrDMS)	THF, BF3*Et2O, -78°, 3 h		(77)	1211
	(5% CuBr)	1. THF, DMS, 0° , 45 min 2. H ₂ CO (g), 0° , 1 h	[(+), (-)-Panasinsene]	(90)	1212
$\times^{\operatorname{CO_2CH_3}}_{\operatorname{CH_2C\equiv CCO_2CH_3}}$	(1 eq Cul)	THF, TMEDA, -78 to 25°	CO ₂ CH ₃	(48)	1213

TABLE XI. ORGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL PRODUCTS (Continued)

TABLE XI. ORGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL PRODUCTS (Continued)

Substrate	Organocopper Reagent	Reaction Conditions	Product(s) and Yield(s) (%) (Target Molecule)		Refs.
CH ₂ Br CH ₂ Br	CH ₂ MgCl (10% Cul)	Ether, -10 to 0°, 15 h	CH2Br (Selinadiene)	()	1228
X.	O (CH ₂) ₂ MgBr (10% Cul)	THF, DMS, 20°, 15 h	L'	(100)	1229
↓ ↓	BrMg(CH ₂) ₂	1. THF, -78 to 0°, 16 h 2. HCl, THF, H ₂ O	[Senoxydene]	(48)	1230
ubstrate CH_2Br CH_2Br CH_2Br CH_2Br CH_2 Br CH_2 CH CH_2	CH ₂ ==CH(CH ₂) ₂ MgBr [(n-C ₄ H ₉) ₃ P•Cul] ₄	 1. THF, -50°, 2 h 2. ICH₂C(OCH₃)=CHCO₂CH₃, HMPA, 25° 	O O O O O O O O	(58)	1231
for the		1. THF 2. PPTS, C₂H₃OH	June [Taonianone]	(70)	1232
CH ₃ O CH ₂ Br OCH ₃	CH ₂ =CH(CH ₂) ₂ MgBr (cat. Li ₂ CuCl ₄)	THF	CH30 (CH2)3CH=CH2 OCH3 Tetrahydrocannabinol	(50)	1233
0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2	H ₂ BrMgO(CH ₂) ₈ MgBr (2.5% CuBrDMS)	-	$(CH_2)_{BOH}$	(—)	1234
C6H3SO2	(CH ₃) ₂ [Cu(acac) ₂] MgBr	THF, 25°, 24 h	[α-Tocopherol side chain]	(48)	1235
₩ ^{P(0)(0C₂H₅)₂}	CF3CH(CH2)3MgBr OTBDMS [(n-C4H9)3PCul]4	THF	CF ₃ CH(CH ₂) ₃ OTBDMS CO ₂ C ₂ H ₅ [Trifluorocyclocitral]	(86)	1236
Ъ		THF, DMS, -30 to 0° , 1 h	CH ₂ CO ₂ H [(+)-ar-Turmerone] [cis-Jasmone] see ref. 1238	(60)	1237
TMSOCH ₂ 1-C ₄ H ₉ O ₂ CCH ₂	çO CH₂—CHMgBr (0.5 eq CuI)	 1. THF, -70 to 0° 2. 10% H₂SO₄, glyme, heat 	Vernoleginl	(86)	1240
ты	OTBDMS (2.5% Li ₂ CuCl ₄)	THF, -78 to 20°, 31 h	[Vitamin E side chain]	(93)	1241

TABLE XI. ORGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL PRODUCTS (Continued)

Substrate	Organocopper Reagent	Reaction Conditions	Product(s) and Yield(s) (%) (Target Molecule)	Rcfs.
OP(O)(OC2H5)2				
CO2CH3 CN	(CH ₃) ₂ CuLi	-	CN (66)	1257
н			H [(+)-Dehydroiridodiol]	
MOMO			момо	
H	(CH2=CH)2CuLi	THF, -78 to 0°, 1 h	Ha (85)	1258
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
			Eriolanin]	
× han				
OH OF	Bn (CH ₃ ) ₂ CuLi	Ether, 0°, 4 h	(63)	1259
u			[(+)-Faranal]	
0=				
10	(n-C4H9)2CuLi (11 eq)	Ether, hexane, $-78^\circ$ , 2.5 h	ОН (67)	1260
T			[Gibberellic acid]	
2	1		TBDMSO	
o		1. Ether, THF, DMS, -78°, 1 h 2. LiAlH ₄ , THF, 20°	(90)	1261
H			[Hypnophilin]	
H Do	(CH.)-Cul i	1 Ether HMDA _ 25°		1262
CH-O-C H	(2.4 eq)	2. CH2=CHCH2I, HMPA, -20°		1202
			[Isabelin]	
-000	Сана		,	
$\sim 4$	(CH.) Cul :	Eiler (% 12 b		10/2
но	(CH3)2CULI	Euler, 0, 12 h	HO- OH (>81)	1203
$\sim$			[JH-2]	
1 1 1	OP(O)(OC2H3)2	2.00.00.00.00	Lab mon	
$\sim\sim\sim$	CO2CH3 (CH3)2CuLi	Ether, $-78$ to $0^{\circ}$ , 1 h	(68)	1264
TEDMSO		THE TO	[Juvenoid analog]	
	(CH2=CH)2CU(CN)L12	1HP, -/8 to -13	TBDMSO ()	1265
1				
$\sim$	(CH ₃ ) ₂ CuLi	Ether, 0°, 12 h	(84)	1266
O2CC8H2(CH	H ₃ ) ₃ -2,4,6		[p-Menthenes]	
[S			TS	
L COSCH	(i-C4H9)2CuLi	Ether, -40°	(53)	1267
Contra			Contrast.	
1			[Myodesmone]	
CH ₂ Br	Cu(C=CC4Hg-n)Li	THE _ 70 - 300	Sn(C4H9-11)3	1260
()	(n-C4H9)3Sn	1 mr, - /8 to 20"	(73)	1268
	OH		[Plenaplysillin 1]	
ter and the second	$\Upsilon_{\mu}$ (C)	Takan di sa di sa sa s	N	
CH3CO2	N Z CuLi	Ether, $-40$ to 0°, 1.1 h	(-)- 	1269
	$\bigvee_{H} [P(C_4H_{y}-n)_3]$		(( - )-r ulo uponej	

TABLE XI. ORGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL PRODUCTS (Continued)



TABLE XI. ORGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL PRODUCTS (Continued)



## TABLE XI. ORGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL PRODUCTS (Continued)

Substrate	Organocopper Reagent	Reaction Conditions	Product(s) and Yield(s) (%) (Target Molecule)		Ref
	(CH ₃ ) ₂ CuLi	THF	[Clovene]	(90)	1294
<u>گ</u>	MOMO(CH ₂ ) ₂ Cu(C≡CC ₄ H ₉ )Li	<ol> <li>Ether, THF, -45°</li> <li>BrCH₂CO₂CH₃, HMPA, ether, -20°</li> </ol>	[Dehydroabietic acid] see ref. 1295 CH ₂ CO ₂ CH ₃ (CH ₂ ) ₂ OMOM [Confertin]	(85)	1296
	(CH3)2Cu(CN)Li2 (BF3·Et2O)	THF, -50°, 3 h	o Coriolin]	(80)	1297
ubstrate $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$	(CH ₃ ) ₂ CuLi	Ether, - 78°		(95)	1298
p-CH ₃ C ₆ H ₄	(CH3)2CuLi	THF, DMS, 0°, 1 h	[Coriolin] $p-CH_3C_6H_4$	(65)	1299
CH ₃ C ₆ H ₄ CI	(CH ₃ ) ₂ CaLi	1. Ether, - 78° 2. Li ₂ CO ₃ , LiBr, DMF, 80°	p-CH ₃ C ₆ H ₄ [(+)- $\beta$ -Cuparenone]	(85)	1300
$\succ$	(CH ₃ ) ₂ CuLi	1. THF, -78° 2. TMSCI, -78 to 0°	[Cyclocotorenone]	()	1301
	[CH2=C(CH3)]2CuLi	-	Å,	(81)	1302
CH ₂ CO ₂ C ₂ H ₅	(CH ₃ ) ₂ CuLi	Ether, -45°	[Cycloeudesmol]	(89)	130
Ů	(n-C4H9)3SnCu(CN)Li [(C2H3)3SiC1]	THF, $(C_2H_5)_3N$ , -78 to 0°, 2 h	$OSi(C_2H_5)_3$ $Sn(C_4H_{9}-\pi)_3$ $IDibuda constants$	(83)	130
SCH,	(CH ₃ ) ₂ CuLi (2 eq)	Ether		(90)	130

TABLE XI. ORGANOCOP	ER COMPOUNDS IN	SYNTHESIS OF	NATURAL PRODUCTS	(Continued)
---------------------	-----------------	--------------	------------------	-------------

Substrate	Organocopper Reagent	Reaction Conditions	Product(s) and Yield(s) (%) (Target Molecule)	Refs
the second	(CH2=CH)2Cu(CN)Li2	Ether, -70 to -50°, 2 h	(78 [8, Elemenone]	) 1306
TMS H O	(CH ₃ ) ₂ CuLi	1. Ether, $-10$ to 0°, 4 h 2. H ₂ CO, $-40$ to 20°, 10 min	TMS HOCH ₂ ~ H (Enomycin A)	) 1307
Xet o	(CH ₅ ) ₂ CuLi (BF ₃ -Et ₂ O)	Ether, -78 to 0°, 75 min	(- [Eucalyptol]	) 1308
CO2CH3	(CH ₃ ) ₂ CuLi	Ether, 0°	(88 CO ₂ CH ₃ CO ₂ CH ₃	) 1309
	(CH ₃ ) ₂ CuLi (CH ₃ Cu)	THF, -70°, 6 h	$[\beta-\text{Eudesmol}]$ $\rightarrow= (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2} (2)^{-2$	) 1310
effe	u (CH3)2CuLi	Ether, C ₆ H ₆ , 0-25°, 4 h	(>54 [Ferruginol]	) 1311
(CH ₂ ) ₂ C ₆ H ₄ OCH ₃	(CH3)2CuLi -p (BF3·Et2O)	Ether, -25°, 1h	(CH ₂ ) ₂ C ₆ H ₄ OCH ₃ -p (93 [Ferruginol]	) 1312
j~~	[CH ₂ =C(CH ₃ )] ₂ CuLi	THF, DMS, -40°	(84	) 1313
Xo Co L	(CH3)2CuLi	Ether, $BF_3 \cdot Et_2O$ , $-78$ to $25^\circ$	[Finchenie]	) 1314
COLCH,	(CH3)2CuLi (3 eq)	Ether, 0°, 45 h	[Furanoeudesmane]	) 1315
осн ₃	(1-C4H9)2Cu(CN)Li2	1. THF, $-78 \text{ to } -45^{\circ}$ 2. TMSCI, $(C_2H_5)_3N$	$ \begin{array}{c}                                     $	) 1316
0 CO ₂ C ₂ H ₅	(CH ₃ ) ₂ CuLi	Ether, 0-5°, 5h	0 H CO ₂ C ₂ H ₅ (90	) 1317

TABLE XI. ORGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL PRODUCTS (Continued)

Substrate	Organocopper Reagent	Reaction Conditions	Product(s) and Yield(s) (%) (Target Molecule)	Refs
↓ ₩	(CH ₃ ) ₂ CuLi	1. Ether, -25°, 70 min 2. Ac ₂ O, DME	(81)	) 1318
Сосн,	(CH2=CH)2Cu(CN)Li2	THF, -78 to 0°	(91) COCH ₃	) 1319
O H CO ₂ CH ₃	(CH ₃₎₂ CuLi	Ether, THF, TMSCI, -78°, 5 min	(95)	) 1320
•	(CH ₃ ) ₂ CuLi	1. THF, −78° 2. CH ₂ ==CHCH ₂ CI, HMPA, 25°	[Guajanolides] O (74 [Gymnomitrol]	) 1321
Ŷ	$\left( \begin{pmatrix} (C_2H_5O)_2CH \\ \end{pmatrix} \end{pmatrix}_2^{CuLi} \right)_2$	1. Ether 2. H ₂ CO	(84 CH(OC ₂ H ₃ ) ₂ [(+)-Hanegokedial]	) 1322
OCH3	(CH3)2CuLi (2 eq)	Ether, -25 to 0°, 9 h	OCH3 (80	)) 1323
Å,	Cu(SC ₆ H ₅ )Li	Ether, THF, -78 to 23°, 2 h	(100	)) 1324
\$#\$°		Ether, - 30°, 1 h	[(Z)-Jasmone] see ref. 1325 TBDMSO	) 1326
CH2=CHCOCH3		Ether, -65 to 25°, 1 h	[(+)-Hirsutene] COCH ₃ [Isocomene]	i) 1327
C ₆ H ₄ CH ₃ -p	(CH3)2CuLi	1. Ether, 0°, 2 h 2. CH ₃ I, HMPA, 25°	C ₆ H ₄ CH ₃ -p [Laurene]	i) 1328

TABLE XI. ORGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL PRODUCTS (Continued)

Substrate	Organocopper Reagent	Reaction Conditions	Product(s) and Yield(s) (%) (Target Molecule)	Ref
	(CH3)2CuLi	Ether, - 78°, 30 min	CECTMS H CO ₂ CH ₃ (-	-) 1329
CH2=C=CHCO2C2H3	(CH3)2CuLi	<ol> <li>Ether, −90°</li> <li>(CH₃)₂C=CHCH₂Br, DME, −30°</li> </ol>	(- CO ₂ C ₂ H ₅	-) 1330
	(CH3)2CuLi	Ether, $-5^\circ$ , 2 h	C H (8	7) 1331
Å	(CH2=CHCH2)2CuLi	1. THF, $-78^{\circ}$ 2. ICH ₂ C=CC ₂ H ₅ , HMPA, TMEDA	[Ligularone] O $CH_2C\equiv CC_2H_5$ (6) [Methyl jasmonate]	0) 1332
CH ₃ O ₂ C	(CH3)2CuLi	1. Ether, -25°, 1h 2. CICH ₂ COCI, 25°, 1.5 h	(7) (+)-Methyl vouacapenate]	5) 1333
( <i>E</i> )-CH ₃ O ₂ C(CH ₂ ) ₂ - CH=CHCO ₂ CH ₃	(CH2=CH)2Cu(CN)Li2	Ether, - 30°, 30 min	0 	) 1334
	(CH3)2CuLi (BF3·Et2O)	Ether, - 78 to 25°	[Mitsugashiwalactone]	I) 1335
O ₂ ccH ₃	(CH3)2CuLi	Ether, -78°, 30 min	[Modhephene]	-) 1336
	(CH3)2CuLi	-	[Muscone]	-) 1337
Colored Collage	(CH ₃ ) ₂ CuLi	1. Ether, DMS, −78°, 2 h 2. C ₆ H ₃ SH, CH ₃ OH	[Muscopyridine]	5) 1338

TABLE XI. ORGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL PRODUCTS (Continued)

Substrate	Organocopper Reagent	Reaction Conditions	(Target Molecule)		Ref
CH ₃ O ₂ C	(i-C₃H⁊)₂CuLi	1. THF, DMS, −78 to −30°, 1 h 2. C ₄ H ₂ SeCl 3. 30% H ₂ O ₂ , THF	[Nagilactone F]	(75)	133
CCH ₃	(CH3)2CuLi (BF3·Et2O)	Ether, $-30$ to $-25^{\circ}$ , 1 h	[Nimbidiol]	(90)	134
$\mathcal{A}_{\circ}$	(CH3)2CuLi	Ether, 0-25°, 2.5 h	(bis(Norisocomene)]	(90)	134
TEDMSO Br	TMS Cu(CECC ₃ H ₇ -n)Li	1. — 2. TBDMSOTf		(86)	134
$\vec{r}$	(CH2=CH)2CuLi		[Pedaldehyde]	()	134
×, H H	(CH2=CHCH2)2CuLi	THF, DMS	CI CI H (Pentalenene)	(76)	134
HOCH ₂	r (CH ₃ ) ₂ Cu(CN)Li ₂	1. Ether, -20° 2. CH₃I	H H H H	()	134
	n (CH3)2CuLi (3 eq)	1. Ether, -25°, 1 h 2. CICH ₂ COCI, 25°		(73)	134
2	(CH ₃ ) ₂ CuLi	Ether, 0°		(76)	134
2	(CH3)2CuLi		[Pinguisone]	(90)	134
	(CH ₃ ) ₂ CuLi	Ether		()	134

TABLE XI.	ORGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL PRODUCTS (Continued)



TABLE XI.	ORGANOCOPPER	COMPOUNDS IN	SYNTHESIS OF	NATURAL	PRODUCTS	(Continued)
-----------	--------------	--------------	--------------	---------	----------	-------------

Substrate	Organocopper Reagent	Reaction Conditions	Product(s) and Yield(s) (%) (Target Molecule)	Refs
OH OH H	(CH2=CH)2Cu(CN)Li2	Ether, 0°, 10 min	(80)	1180
снуо	C4H9 (CH3)2CuLi	Ether, 0°, 30 min	CH ₃ O (93)	1363
CO ₂ C ₄ H ₉ -t	(p-CH3C6H4)2CuLi	Ether, -50 to 0°, 6 h, 25°, 14 h	$ \begin{array}{c}                                     $	1364
	,Br (CH3)2CuLi	НМРА, С"Н₅, 0–5°, 4 b	(25-30)	1365
₽}₂	(CH3)2CuLi	1. THF, TMSCl, -78 to 20°, 3h 2. THF, 1 M HCl 20°	[Valeranone]	1366
	(CH ₃ ) ₂ CuLi	THF, -10 to 0°, 1 h	$ \begin{array}{c} H \\ \downarrow \\ CH_{3}O_{2}C \end{array} $ [Verrucarol]	1367
Å,	(CH ₃ ) ₂ CaLi	Ether, 0°, 15 min	(75)	1368
	CO2C2H3 (CH3)2CuLi	Ether, -10 to 25°, 12 h	$[\beta-Vetivone]$ $(28)$ $[Vinylpodocarpenol]$	1369
گې	(CH2=CH)2CuLi	Ether, DMS, -50 to 25°, 1 h	(72)	1370
		d. Reactions of RCu, RCu-Ligand	[Zizaene]	
rC4H4CH20	(CH ₃ ) ₂ C=CH(CH ₂ ) ₂ Cu (BF ₃ ·Et ₂ O) [P(C ₄ H ₅ ·n) ₃ ]	Ether, -78 to -10°, 6 h	(81) $98.5% de$ $[(S)-(-)-Citronellic acid]$	1371

TABLE XI. ORGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL PRODUCTS (Continued)

Substrate	Organocopper Reagent	Reaction Conditions	Product(s) and Yield(s) (%) (Target Molecule)		Refs
X	$RO(CH_2)_2 Cu$ $R = TBDMS$ $(P[N(CH_3)_2]_3)$ $(BF_3 \cdot Et_2O)$	Ether	(Hirsutene)	(70)	1372
Ċ	CH30	Ether, P(C ₄ H ₉ -n) ₃ , -78°	OCH ₃	(77)	1373
	CH3Cu (BF3·Et2O)	-		(88)	1374
$\langle p \rangle$	TMSC≡C(CH ₂ ) ₂ Cu (BF ₃ ·Et ₂ O)	THF, -78 to 20°	(Modhephene)	(52)	1375
-Q-0	CH ₂ =CH(CH ₂ ) ₂ Cu (BF ₃ ·Et ₂ O)	THF, -78°, 2 h	[Modhephene] $CH_2 = CH(CH_2)^{2}$ [Parthenin]	(59)	1376
£°	CH3Cu (BF3·Et2O)	Ether, -78 to 0°, 4 h	[Quadrone]	(77)	1377
Å.	CH3Cu (BF3·Et2O)	Ether, -70 to 20°		(46)	1378
$R = Si(C_0H_5)_2C_0H_{2^{-1}}$	OTBDPS TMSCu	Ether, HMPA, -60°, 1 h	[(-)-β-semene] TMS [Tricyclohexaprenol]	(81)	1379
OHC T	CH3Cu [( <i>i</i> -C4H9)2NH]	1. Ether, -75 to 0° 2. CH ₃ OH, H ₂ O, 195°	°FZ	(75)	1380
1		e. Miscellaneous Couplings	[β-Vetivone]		
CH2=CHCH2Br	O'Li [Cul·P(OCH ₃ ) ₃ ]	THF, -78°, 2.5 h	Alton .	(50)	1381
(CH3O)2HC (CH2	(CH ₃ ) ₃ Cu ₂ MgCl·LiBr ) ₂ C≡CH	1. THF, DMS, 0°, 44 h 2. ICN, -45 to 20°	(CH ₃ O) ₂ HC H	(60)	1382

TABLE XI.	ORGANOCOPPER	COMPOUNDS IN S	SYNTHESIS OF I	NATURAL.	PRODUCTS	Continued
TIDLL M.	ORGANOCOTTER	COM CONDS IN	STRUTTESIS OF I	I ALORAL	RODUCIS	COmmune

Substrate	Organocopper Reagent	Reaction Conditions	Product(s) and Yield(s) (%) (Target Molecule)		Refs
$\sim$	X		$\sim \chi$		
	NaAl[O(CH ₂ ) ₂ O] ₂ H ₂ (CuI)	$C_6H_6$ , THF, -45 to -10°, 2 h		()	138
	(i-C₄H₂)₂AlH (1 cq CH₃Cu)	Ether, toluene, HMPA, -30°, 4 h		(100)	119
H o H = 0 CO ₂ C	(CH3)2CuLi H3	Ether, -20 to -5°, 40 min		(75)	138
CO ₂ CH ₃	(CH3)2CuLi	Ether, -30°, 1.5 h	[Epialantolactone] $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$	(100)	138
	(CH2=CH)2CuLi	Ether, DMS, $-20$ to $0^{\circ}$ , 2 h	(+)-Isoneonepetalactone]	(76)	138
<₽~	(CH ₃ ) ₂ CaLi (5 eq)	1. THF, -78° 2. Cl ₂ P(O)N(CH ₃ ) ₂ 3. (CH ₃ ) ₂ NH	[Modhephene] [Isoiridomyrmecin] see ref. 1388	(76)	1387
$\bigcirc$	C ₆ H ₅ (CH ₃ ) ₂ SiMgCH ₃ (5% Cul)	1. Ether, THF, 0°, 10 min 2. CH ₃ I		(77)	138
		C. Steroids	[Muscone]		
		THF, 20°, 12 h	HT S	(80)	139
		Ether, - 78°	OH [Cholesterol derivative] [Cholesterol] see ref. 1391	(78)	139
CH4CO4C	(CH ₃ ) ₂ C=CHMgBr C ₄ H ₉ -r (5% CuBr·DMS)	THF, TMSC1, -78°, 30 mm	[Cortisone]	(70)	135

TABLE XI. ORGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL PRODUCTS (Continued)

Substrate	Organocopper Reagent	Reaction Conditions	Product(s) and Yield(s) (%) (Target Molecule)	R
C C C C C C C C C C C C C C C C C C C	(C ₂ H ₅ ) ₃ SiOC(CH ₃ ) ₂ (CH ₂ ) ₂ MgBr (1.5 еq Сш)	1. THF, 20°, 40 min 2. (n-C4H2)4NF, THF, reflux	$(78)$ $[Dehydrovitamin D_3]$ $[Hydroxyvitamin D_3] see ref. 1393$	80) 14
	s CH₃C≡C(CH₂)₂MgBr (1 eq Cul)	THF, BF3. Et2O, -78 to 25°, 4 h	$ \begin{array}{c} O \\ \downarrow \\ H \\ (CH_2)_2 C \equiv CCH_3 \\ \hline \\ 11-Oxosteroids \\ \hline \end{array} $ (5)	3) 13
твомо	CH ₂ OTs <i>i-C</i> ₃ H ₁₁ MgBr	THF, 30°, 5 h	(8 (20.5)-Steroids	31) 13
CO2CH3	i-C ₄ H ₁₃ MgBr (cat. CuI)	THF, −20°, 30 min	(4 (4 (Vitamin D ₃ )	43) 13
	QBn b	. Lithiocuprates, Substitutions	QBn 📲	
CH ₃ O	(i-C ₂ H ₇ ) ₂ Cu(CN)Li ₂	-	$ \begin{array}{c}                                     $	53) 13
тнро	H (1 eq CH ₃ Li)	ТН <b>F, —20°, 2 h</b>		-) 13
CHOT H	INHC ₆ H ₅ OMOM (CH ₃ ) ₅ Cu ₃ Li ₂	Ether, 20°, 48 h	[Cholestane triol] [Cholestane triol] [Cholestane triol] [Hydroxyvitamin D ₂ ]	78) 13
BnOCH	(CH3)2CuLi	Ether, -20°	BnOCH2 OH (S	93) 14

TABLE XI. ORGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL PRODUCTS (Continued)





TABLE XI. ORGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL PRODUCTS (Continued)

Substrate	Reagent	Conditions	(Target Molecule)	Refs
Br(CH₂)₄Br	THPO(CH ₂ ) ₄ MgBr (1% Li ₂ CuCl ₄ )	THF, 0°, 2 h	THPO(CH ₂ ) ₈ Br (62) [Lepidopteran sex pheromone]	1425
~~^~	n-C ₇ H ₁₅ (10% Cul)	THF, HMPA, -23°, 30 min	(50) [Lepidopteran sex pheromone]	1426
~ the r	CIMg(CH ₂ ),OTHP (cat. Li ₂ CuCl ₄ )	1. THF, -30°, 4 h 2. TsOH, CH ₃ OH 3. Ac ₂ O, Py	[Lepidopteran sex pheromone]	1427
(E)-CH3CH=CHCOCH3	(C ₂ H ₅ ) ₂ CuMgBr	1. Ether, -60° 2. TMSCI, HMPA, 20°	[Manicone (ant alarm pheromone)] C ₂ H ₂ O. (78)	1428
HCSC OC2H3	(n-C _x H ₁₇ ) ₂ CuMgBr-LiBr	THF, -60°, 1.5 h	<i>n</i> -C ₈ H ₁₇ CH=C=CH (90)	1429
O3SCH3			[Mole dried bean beetle sex attractant] $\bigcirc$ _CH(OCH ₄ ) ₂	
CH(OCH ₃ ) ₂ OTs	n-C10H21MgBr (15% Li2CuCl4)	Ether, THF, -78°, 2 h	$C_{10}H_{21}-n$ (75)	1430
венас ~~ 8	- C. H. MaBr	1 755	[Muscalure (housefly sex pheromone)]	1421
	(Cul·DMS)	2. TsOH, C ₆ H ₆	C ₁₁ H ₂₃ -n	1451
Br(CH ₂ ) ₃ - CH(CH ₃ )CH(CH ₃ )OBn	n-C ₆ H ₁₇ CH(CH ₃ )MgBr (1% Li ₂ CuCL)	THF, 0–25°, 15 h	[Oriental hornet pheromone] n-C ₈ H ₁₇ CH(CH ₃ )(CH ₂ ) ₃ - CH(CH ₃ )CH(CH ₃ )OBn [Pine sawfly sex pheromone] (40)	1432
OTs OBn	( <i>n-C</i> ₂ H ₁₇ ) ₂ CuMgBr	THF, -25°, 7 d	<i>n</i> -C ₈ H ₁₇ (82)	1433
Landons .	л-С ₆ Н ₁₃ МgCl (Сш)		[Pine sawfly sex pheromone] $\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	696b
CO2C2H3	(n-C3H11)2MgBr	÷	OH $(-)$ $n-C_6H_{13}$ CO ₂ C ₂ H ₅ $(-)$	755
$\sim$	СІМg(CH2)50TBDMS (10% Сш)	THF, 0°, 3 h	OH (92) (CH ₂ ) ₆ OTBDMS [Queen honeybee pheromone]	1434
OC ₂ H ₅ OC ₂ H ₅	(CH ₂ ) ₃ MgCl (cat. Li ₂ CuBr ₄ )	THF, -10 to -5°, 1 h	(-)	1435
ОТОТЯ	MgBr (10% Li ₂ CuCl ₄ )	Ether, THF, 20°, 5 h	[Red flour beetle pheromone] (59)	1436
OP(0)(OC2H5)2	CH ₃ MgCl (cat. CH ₃ Cu)	-	CO ₂ CH ₃ (68)	1437
CO ₂ CH ₃			[San José scale nheromonal	

TABLE XI.	ORGANOCOPPER	COMPOUNDS IN	SYNTHESIS OF NATURA	L PRODUCTS (Continued)

Substrate	Reagent	Conditions	(Target Molecule) (%)
¢₅ӊs∽√	(CH ₃ ) ₂ C=CHCH ₂ MgBr (cat. CuI)	THF, -30 to 20°	SC ₆ H ₅ (81) 14 OH [(+)-Sulcatol (Ambrosia beetle aggregation pheromone)] [Square-necked grain beetle aggre- gation pheromone] scc ref 1440
OTHP OTs	(CH ₃ ) ₂ C—CHMgBr (Cul)	THF, 0–40°, 16 h	(100) 14 [(+)-Sulcatol (Ambrosia beetle aggregation pheromone)] HO ₂ CCH ₂
Ъ	CIMg (CH ₂ )6-( (5% CuI)	0 THF, DMS, -45°	(CH ₂ ) ₆ (77) 14
THPO(CH ₂ ) ₂ C=CCH ₂ OTs	n-C ₈ H ₁₇ (CH ₂ C==C) ₂ MgBr (CuBr·DMS)	1. ТНF, 0-20° 2. Н+, СН ₃ ОН	pheromone)] HOCH ₂ (CH ₂ C=C) ₃ C ₂ H ₁₉ -n (75) 14 [Female winter moth sex pheromone]
		b. Lithiocuprates, Substitutions	
or o	$\left(n-C_{3}H_{11}\right)_{2}$ CuLi (5 eq)	Ether, CH ₂ Cl ₂ , -30°, 2 h	$C_{3}H_{11}-\pi$ [Black-tailed deer pheromone] (12)
TMS. (CH ₂ ) ₉ OTHP	$\left( \begin{array}{c} n-C_{3}H_{7} \end{array} \right)_{2}$ CuLi (BF ₃ ·Et ₂ O)	Ether, -60°, 30 min	n-C ₃ H ₇ TMS OH (-) 14 [Bombykol]
	$\left(n-C_{3}H_{7}\right)_{2}C_{0}L_{1}$	THF, ether, ZnBr ₂ , [PdP(C ₆ H ₅ ) ₃ ] ₄ (5%), -40 to 10°, 1 h	л-С ₃ Н ₇ (—) 14 [Bombykol]
CH2OTs	(CH ₃ ) ₂ CuLi	Ether, 5°, 16 h	(74) 14
			[(-)-exo-Brevicomin (Bark beetle aggregation pheromone)]
Å − Br	(CH ₃₎₂ CuLi	Ether, HMPA, 20°, 24 h	(62)
LIOCH2	CH3Cu(CN)Li (3 eq)	THF, LiCl, 0 to 25°, 4 d	
I(CH ₂ )3CO ₂ C ₂ H5	(n-C3H11)2 Culi	THF, HMPT, P(OC ₂ H ₅ ) ₃ , 25°, 3 h	n-C ₃ H ₁₁ (CH ₂ ) ₃ CO ₂ C ₂ H ₃ (87) 1. [Douglas fir tussock moth sex pheromone]
HC CC	(n-CaH17)2CuLi C10H7-1	Ether, -78°, 7 h	$n - C_{2}H_{17} - C = (CH_{2})_{2}CO_{2}CH_{3}$ (62) 14 [Dried bean beetle sex attractant]
0 CO2CH3	[(CH ₃ ) ₂ C=CH] ₂ CuLi	Ether, -15°, 2 h	(+)-Eldanolide (Wing gland pheromone of sugar canc borer)

## TABLE XI. ORGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL PRODUCTS (Continued)
Substrate	Organocopper Reagent	Reaction Conditions	Product(s) and Yield(s) (%) (Target Molecule)	Refs
S CO ₂ CH ₃	[(CH ₃ ] ₂ C==CH] ₂ CuLi	Ether, $-40$ to $-25^{\circ}$ , 2 h	200 (67)	1453
OBn O3SCH	I ₃ (CH ₃ ) ₂ CuLi	Ether, -78 to 0°	[(+)-Eldanolide]	1454
	$(n-C_4H_9)$ (CH ₂ )8 (0.5 eq LiC=CC_4H_9)	CuLi 1. Ether, -25 to 20°, 1 h 2. CH ₃ COCI, Py, 20°, 2 h	[European eim bark beette aggregation pheromone] $\int 0_2 \text{CCH}_3$ (63) [Lesser peachtree borer pheromone]	681
THPO(CH ₂ )	N I (CH₃)₂CuLi	1. THF, -15°, 4 h 2. TsOH, CH ₃ OH 3. Ac ₂ O, Py	CH ₃ CO ₂ (CH ₂ ) ₆ (68) [Lobesia botrana sex pheromone]	1455
CH3I		THF, HMPT, -60 to 20°, 16 h		1456
Jud coci	(C2H3)2CuLi	Ether, -78°, 15 min	[Manicone (ant alarm pheromone)] $\downarrow \downarrow $	1457
C2H3O2C CO2C2	(CH3)2CuLi (3 eq) H5	Ether, $-55$ to $-20^{\circ}$ , 4 h	[Manicone (ant alarm pheromone)] OH C ₂ H ₅ O ₂ C CO ₂ C ₂ H ₅ (78) [8-Multistriatin]	1458
OP(O)(OC ₂ H ₃ ) ₂	CH3Cu(CN)Li	Ether, -78°, 1 h	OP(O)(OC ₂ H ₃ ) ₂ (91)	1459
I(CH2)+CH(OC2H3)2	( ) Culi	1. Ether, HMPA, -40 to 0°, 3 h	[α-Multistriatin (smaller European elm bark beetle aggregation pheromone)] (CH ₂ ) ₉ CHO (33)	1460a
° OTHP	$(\bigcirc \bigcirc)_2$ $(\bigcirc)_2$ CuLi	2. (CO ₂ H) ₂ , THF, H ₂ O, 60 ^o 1. THF, 0-20 ^o 2. H ⁺ , H ₂ O	(64)	1461
~~~>	(n-C ₅ H ₁₁ ) ₂ CuLi	Ether, -20°, 1 h	[Olive fly sex pheromone] n-C ₅ H ₁₁ OH () [Phtorimaea opercubila pheromone]	559
\$	(*-CgH17)Culi	Ether, $-50 \text{ to } -40^{\circ}, 3 \text{ h}$	n-CgH ₁₇ [Pine sawfly sex pheromone] (53)	1462
<u>~~~~</u>	OTs O (n-C10H21)2CuLi	-	[Saltmarsh caterpillar moth sex pheromone] (34)	1463
~-~~-	I (n-C ₁₀ H ₂₁) ₂ Cu(SCN)Li ₂	THF, -30*	[Saltmarsh caterpillar moth sex pheromone] (81)	1464

TABLE XI. ORGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL PRODUCTS (Continued)

Substrate	Organocopper Reagent	Reaction Conditions	Product(s) and Yield(s) (%) (Target Molecule)	Refs.
CH2OTs	(CH ₃) ₂ CuLi (2 eq)	Ether, -40 to 25°, 12 h	C2H5 (1465
n-C ₅ H ₁₁ (CH)20Ts (n-C2H7)2CuLi (2 eq)	Ether, -30°, 6 h	[Serricornin (Cigarette beetle aggregation pheromone)] n-C ₅ H ₁₁ [U. ormatrix pheromone]	1466
	c. L	ithiocuprates, Conjugate Additions		
CH2=CHP+(C6H3)3Br-	(=CiHi)2 CuLi	1. THF, HMPA, -50°, 20 h 2. <i>n</i> -C ₁₁ H ₂₂ CHO, 25°, 3 h	n-C ₅ H ₁ [Arctiid moth pheromone] (40)	14605
Join Color	(CH3)2CaLi	-	0Bn (70)	1467
			 [Eldanolide (wing gland pheromone of sugarcane borer)] [(±)-Eldanolide] see ref. 1468 [European marshfly sex pheromone] see ref. 1469 	
CH2=CHCOCH3	C2H5 Ou(C=CC4H9-n)Li	-	C2H3 (CH2)2COCH3 (30)	1470
			[Faranal (Pharaoh ant trail pheromone)]	
OC(CeH3)3			KLQ	
tg_	(CH ₃) ₂ CuLi	Ether, DMS, -78 to -40° , 1 h	J OCH ₃ (94)	1471
0 och		-	[(−)-α-Multistriatin (Smaller European elm bark beetle aggregation pheromone)] [Serricornin (Cigarette beetle aggregation pheromone) see ref. 1472	
+-CaH17CO	(n-C6H13)2 CuLi	1. Ether, -78°, 5 min 2. KF, CH ₃ OH	n-C ₆ H ₁₇ CO(CH ₂)2 [Peach fruit moth sex pheromone]	1473
	d	Reactions of RCu, RCu-Ligand		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CH ₂ =C(CH ₃ )Cu·LiBr	<ol> <li>Ether, BF₃·Et₂O, P(C₄H₉-n)₃, −78°</li> <li>Ac₂O, Py</li> </ol>	of the second	1474
CH302C(CH3)2COCI	<i>n</i> -C ₆ H ₁₇ C==CCu	-	[California red scale pheromone] $CH_3O_2C(CH_2)_2COC \equiv CC_8H_{17}n$ (85) [Japanese beetle aggregation pheromone]	1475
CH ₃ CO ₂ (CH ₂ ) ₁₀ C=CI	C'H' CP-TI	Ether, THF, TMEDA, -30 to 0°, 30 min	C=C(CH ₂ ) _M O ₂ OCH ₃ (76) C ₂ H ₃ [Processionary moth pheromone]	1476
		e. Miscellaneous Couplings	(riversional) men processional	
THPO(CH2),C=CH	(CH ₃ ) ₃ SnMgCH ₃ (5% CuCN)	1. THF, 0°, 1 h 2. I ₂ , CH ₂ Cl ₂	I (82)	1477
C₂H₃C≡C−∕∕√(CH₂)₃Br	EEO(CH ₂ ) ₃ Li (10% Li ₂ CuCl ₄ )	1. THF, −5°, 1 h 2. Cl ₃ CCO ₂ H, THF, H ₂ O	(50) C ₂ H ₅ C≡C- (50) (European grapevine moth sex	1478

TABLE XI. ORGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL PRODUCTS (Continued)

Substrate	Organocopper Reagent	Reaction Conditions	Product(s) and Yield(s) (%) (Target Molecule)	Refs
		E. Prostanoids		
		a. Grignard Couplings		
CH2=CHCH2Br	BrMgC=C(CH ₂ ) ₃ CO ₂ MgBr (5% CuBr)	<ol> <li>THF, reflux 8 h</li> <li>CH₂N₂, ether</li> </ol>	CH ₂ =CHCH ₂ C=C(CH ₂ ) ₃ CO ₂ CH ₃ (88) [Arachidonic acid metabolite]	1475
TMSC=CCH2OTs	(CH ₃ O) ₃ C(CH ₂ ) ₃ C=CMgBr (10% CuI)	THF, -78 to 25°	TMSC=CCH ₂ C=C(CH ₂ ) ₃ CO ₂ CH ₃ (84) [12(S)-HETE]	1480
Å, H	BrMg(CH ₂ ) ₃ OTHP (cat. CuCN)	THF, -20 to 0°, 2 h	OH THPO(CH ₂ ) ₄ () [12(S)-HETE metabolite]	1481
			он	
OEE	n-C ₄ H ₉ MgBr (CuI)	THF, ether	TMS OEE [Linoxin B]	1067
OTHP	n-C ₃ H ₁₁ C=CMgBr (0.5 eq CuCl)	THF, 60°, 1 h	(65-71)	1482
			[LTA, Methyl ester]	
p-BrC₀H₄CH₂Br	BrMg(CH ₂ ) ₄ (CH ₂ ) ₂ OTBDMS (1 eq Li ₂ CuCl ₄ )	THF, -15°, 18 h	p-BrC ₆ H ₄ (CH ₂ ) ₅ (CH ₂ ) ₂ OTBDMS (50) [LTA ₄ -20-Aryl]	1483
n-C ₃ H ₁₁ C=CCH ₂ Br	EBOCH ₂ -CECMgBr (CuBr)	<ol> <li>THF, 60°, 45 min</li> <li>Acetone, 0.5 NH₂SO₄, 20°, 3 h</li> </ol>	HOCH ₂ $-C \equiv CCH_2C \equiv CC_3H_{11} - \pi$ (-) [LTA ₄ , diacetylenic]	1484 1485
тизо	CIMg(CH ₂ )gOTHP (CuI)	1. THF, −45°, 4 h 2. (E)-C ₂ H ₅ CH=CHCHO, −78°, 15 h	() TMSO (CH ₂ ) ₅ OTHP [Prostaglandin analogs]	1486
(CH ₂ ) ₂ OTs			HO	
*	C ₂ H ₃ MgBr (cat. Li ₂ CuCl ₄ )	1. THF 2. H ⁺ , H ₂ O	HOCH ₂ C ₂ rl ₅ (69) [Prostaglandin synthon] (CH ₂ )_Sn.	1487
(CH ₃ ) ₃ SnC≡CCH ₂ CI	n-C ₂ H ₁₁ MgBr (5% CuCN)	THF, -25 to -18°, 15 min	$\frac{1}{n-C_5H_{11}} = C = CH_2 $ (74) [Pumaglandin 4]	1488
BrCH ₂ C=C(CH ₂ ),CO ₂ H	C2H5 C2H5	THF, 55°, 12 h	HO C ₂ H ₅ [Rice blast defensive agent] (55)	1489
TNO	CH ₂ —CHCH ₂ MgCl (6 eq) (10% CuI)	THF, 0°, 20 h	THO (88)	1490
	b.	Lithiocuprates, Substitutions	[1momoorane by syndion]	
CH3CO2 CH-CO			H.X.	
H H Br	H	THF, -78°	H n-CaH9 H (90-95)	1491

TABLE XI.	URGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL PRODUCTS (Continued)

\$47



Substrate	Organocopper Reagent	Reaction Conditions	Product(s) and Yield(s) (%) (Target Molecule)	Refs
CH-0-C.	_(CH2)3CO2CH3		6	
CH404C	OTs (n-C4H9)2CuLi (5 eq) FEE	Ether, -40°, 2 h	OEE [(+)-15-(S)-PGA ₂ ] (67)	1502
Ş	Li(n-C ₃ H ₇ C=C)Cu C ₃ H ₁₁ -n OTBDMS	-30°, 16 h	HO C ₂ H ₁₁ -** (65-70)	1503
OSH(C2H3)3 C3H(1-R OTBDMS	(CH3) ₃ SiO(CH2) ₇ Cu(CN)Li	<ol> <li>Ether, -78 to -35°, 7 h; -10°, 12 h</li> <li>KF, C₂H₅OH, pH 7</li> </ol>	$[PGE_{2}, PGF_{2n}]$ $(80)$ $HO$ $C_{3}H_{11}-4$ $OTBDMS$ $[PGE_{1}, PGF_{1n}]$	1504
COLCH ³	Ts (n-C4H9)2CuLi (10 eq)	Ether, -40°, 2 h	$ \begin{array}{c} \begin{array}{c} & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$	1503
Å		Ether, - 78°	(65) TBDMSO ^{C3H11-#}	150
	(CH ₃ ) ₂ CaLi	Ether, - 50°, 30 min	(29)	1507
CH2=C=< ^I CO	2CH ₃ N Cu(CN)Li C ₃ H ₁₁ -n OTHP	THF, -78 to -45°, 15 h	[Prostaglandin intermediates] N CH ₂ C=C(CH ₂ ) ₃ CO ₂ CH ₃ C ₃ H ₁₁ -# (44) OTHP [Pyridino prostanoids]	1508
CEH,	(C ₆ H ₅ ) ₂ CuLi	Ether		150

Substrate	Organocopper Reagent	Reaction Conditions	(Target Molecule)	Ref
	c. Li	ithiocuprates, Conjugate Additions		
ROCH2 0 0	(CH2==CH)2Cu(CN)Li2	Ether, -78°, 1 h	ROCH ₂ (64 [6a-Carbacyclin analog]	) 151
	n-C5H11→Cµ(C≡CC3H7-n)L OTBDMS	i 1. Ether, HMPA, -78°, 1 h 2. CH ₂ —CHCH ₂ Br, NH ₃ (1)	(2) (2) (11-Decorrorstagandins)	4) 151
心	(r-C ₅ H ₁₁ ) THPO 2	Ether, P(C4H5-78)3, -78 to -15°		I) 151
L corati	(n-C ₅ H ₁₁ ) CuLi OTBDMS	-	[Dimethylprostaglandins] $\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$	2) 151
^{n-C2H} 11→→→−CΞC	$H \left( - \underbrace{- \underbrace{- \underbrace{- \underbrace{- \underbrace{- \underbrace{- \underbrace{- \underbrace{- \underbrace{-$	uLi Ether, DMS, -50°, 1 min	(12-HETE)	i) 536
THEPO	CH3 [C4H4(CH3)2Si]2Cu(CN)Li2	THF, 0°, 20 min	THPO OTBDMS	) 1514
Å	n-C3H11 OTBDMS	1. Ether, -78° 2. BrCH ₂ C(OCH ₃ )—CH ₂ , NH ₃ (1)	[Homoisocarbacyclin]	) 151:
Jan (CH2)3-		)Li —	California (	-) 151



TABLE XI. ORGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL PRODUCTS (Continued)



TABLE XI. ORGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL PRODUCTS (Continued)



TABLE XI. ORGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL PRODUCTS (Continued)



Substrate	Organocopper Reagent	Reaction Conditions	Product(s) and Yield(s) (%) (Target Molecule)	Ref
BrCH2 (CH2 TBDMSO	) ₃ CO ₂ CH ₃ a-C ₃ H ₁₁ C≡CCH ₂ C≡CCa	THF, HMPA, 0°	С=С С=СС ₂ H ₁₁ -ж (60-70) С=С С=СС ₂ H ₁₁ -ж /	1553
твомо	n-C ₅ H ₁₁ THPO [2.6 eq P(C ₄ H ₅ -n) ₃ ]	1. Ether, -78°, 50 min 2. OHC(CH ₂ ) ₃ CO ₂ CH ₃	TBDMSO OTHP (60) OTHP	
	n-C ₃ H ₁₁ THPO [2.6 eq P(C ₄ H ₂ -n) ₃ ]	1. Ether, −78°, 50 min 2. CH ₃ O ₂ C(CH ₂ ) ₃ C==CCHO	$\begin{bmatrix} PGD_1, POE_1, POE_2 \\ HO \\ HO \\ C \equiv C(CH_2)_3 CO_2 CH_3 \\ C_3 H_{11} \cdot n \\ THPO \\ \begin{bmatrix} PGD_2, PGE_2 \end{bmatrix} $ (65)	1554
TEDMSO	n-C3H11 TBDMSO [3 eq P(C4H4-n)3]	1. Ether, -78 to -40°, 1 h 2. CH ₂ =C(NO ₂ )(CH ₂ ) ₄ CO ₂ CH ₃	[Mexiprostil] see ref. 1556 CH ₂ CH(NO ₂ )(CH ₂ ) ₄ CO ₂ CH ₃ TBDMSO C ₃ H ₁₁ -n (42) OTBDMS [PGE ₁ ]	1557
TEDMSO	$\frac{n-C_{3}H_{11}}{\text{TBDMSO}}$ $[2.6 \text{ eq } P(C_{4}H_{5}-n)_{3}]$	1. Ether, THF, -78°, 1 h 2. HMPA, (C ₆ H ₃ ) ₅ SnCl 3. ICH ₂ (CH ₂ ) ₃ CO ₂ CH ₃	TBDMSO (CH ₂ ) ₃ CO ₂ CH ₃ (78) (78) OTBDMS [PGE ₂ ]	561
×J	n-C ₅ H ₁₁ OTBDMS [1 eq P(C ₆ H ₅ ,n) ₃ ]	1. THF, -78° 2. HMPA, ICH ₂ (CH ₂ ) ₃ CO ₂ CH		155
TEDMSO	n-C ₅ H ₁₁ TBDMSO	Ether, P(C ₄ H ₅ - <i>n</i> ) ₃ , -78 to -20°, 40 min	[PGE ₂ ] TBDMS0 CH ₃ (48) OTBDMS	155
С с с	M-C3H11 Cu TBDMSO	Ether, DMS, -78°	[Pyrazole prostacyclin] O Co ₂ CH ₃ C ₃ H ₁₁ -m OTBDMS	156
		e. Miscellaneous Couplings	[Thiathromboxane analogs]	
Br O	n-C ₃ H ₁₁ OTBDMS	Ether, -60°, 2 h	Br C ₃ H ₁₁ -n (60) (FGA-1)	1561
OTBDMS	n-C₃Hıı OTBDMS	Ether, CH ₂ Cl ₂ , -60°, 2 h	C ₅ H ₁₁ - <i>n</i> OTBDMS (61)	156

TABLE XI. ORGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL PRODUCTS (Continued)

Substrate	Organocopper Reagent	Reaction Conditions	Product(s) and Yield(s) (%) (Target Molecule) Re
Pd(Hfacac) Hfacac = (CF ₃ C	$H_{2} CO_{2}CH_{3} \qquad \begin{pmatrix} n - C_{3}H_{11} \\ 0 \end{pmatrix}_{2} CuLi \\ O \\ CH_{2} \end{pmatrix} O \\ CH_{2} \qquad O \\ D \\$	THF, P(C ₆ H ₅ ) ₃ , -78 to 25°	$(CH_2)_2CO_2CH_3$ $(30) 15$ $C_5H_{11}-n$ [Thienylprostaglandins]
		F. Miscellaneous	
		a Grienard Countines	
CH1COCI			CH2COC4H9-S
CH40 OCH3	s-C ₄ H ₉ MgBr (1 eq CuBr)	Ether, -50 to 25°	(70) 15 CH ₃ O [Acetogenin]
N=(	C ₂ H ₃ MgBr O (1 eq CuBr·DMS)	THF, -23°, 4 h	(90) 15 C ₂ H ₅ COCH ₂ [Amphotericin B]
N-CH_CO.	C ₂ H ₃ MgBr (-% CuBr) C ₆ H ₄ CO ₂ CH ₃ -p	THF, -15°	N-CH2COCH2CH(C2H2)C6H4CO2CH37P (65) 15
*C.H. CH200	C ₆ H ₃ ) ₃ → TMS MgBr (10% Cul)	THF, DMS, 0°, 24 h	[Antiroiate agents] TMS OH $-C_4H_2$ (-) 15 [(+)-Blastmycinone]
	H3 CH3MgBr CH (CuBr·LiBr) OCH37P	-	TBDMSO H H CcH4OCH5P [Al-Carbanenems]
H. Co	BnO(CH ₂ ) ₄ MgBr [8% Cu(OAc) ₂ ]	THF, 20°, 2.5 h	(88) 15 (Chlorothricolide)
CF3 CH2Br	p-CH3OC6H4MgBr (1 eq CuBr·DMS)	THF, 50°, 4 h	[Ketoprofen] see ref. 1570 CF ₃ CH ₂ C ₆ H ₄ OCH ₃ -p (66) 15 [a-Chymotripsin inhibitors]
OTEDMS	CH ₂ =CHMgBr (cat. Cul)	THF, -30°, 2 h, 0° 2 h	OTBDMS HO [2'-Deoxyuridines, carbocyclic]
CICH2 N · HCI	m-CH3OC6H4MgBr (2 eq) (10% Cul)	THF, -10 to 20°, 3 h	m-CH ₃ OC ₆ H ₆ CH ₂ N C ₃ H ₇ m + (82) 15 m-CH ₃ OC ₆ H ₆
			N CaHr-n

TABLE XI. ORGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL PRODUCTS (Continued)

[Dopamine autoreceptor agonist]

564

Substrate	Organocopper Reagent	Reaction Conditions	Product(s) and Yield(s) (%) (Target Molecule)	Refs
OBn Bn0	CH3MgBr (6% Cul)	THF, 0°, 3 h	HO OBn (60)	1574
OzCC4H9+ CH2CH(OCH3)2	t-C₄H₄MgBr (3% CuCN)	Ether, $-20^{\circ}$ , 2 h	[Erythronolide A] CH2CH(OCH3)2 (87) C4H3-1 (Ginkapida B)	1575
TSO	CH ₃ MgCl (0.5 eq CuBr·DMS)	THF, -10°, 4 d		1576 1577
DTBDMS CO ₂ Bn Br	[cat. Cu(OAc) ₂ ]	Ether, 0°	[Indanamycin, Ionophore X-14547 A]	1578
C2H3C=CCH2C=CCH2Br	BrMgC=C(CH ₂ ) ₂ OTHP (20% CuCl)	THF, reflux 4 h	$[ent-Lasalocid A] C_2H_5(C=CCH_2)_3CH_2OTHP $ (67) [Laurencenyne] (67)	1579
₿.	CH2=CH(CH2)2MgBr (CuBr·DMS)	THF, -78°	(97)	1580
C ₆ H,	CIMg OTBDMS (cat. Cul)	THF, -30°, 10 min	HO OTBDMS [Methyl pseudomonate C]	565
	(2,4-Cl ₂ C ₆ H ₃ CH ₂ ) ₂ CuMgBr	Ether, DMS, -78°, 15 min	$\begin{array}{c} \text{MOMO} \\ & CO_2C_2H_5 \\ & OH \\ & (CH_2)_2C_6H_3Cl_2-2.4 \end{array} $ (100)	1581
	CH2=CHMgBr [CuI·P(C4H9-n)3]4	Ether, THF, -45 to -55°, 15 min	[Mevinolin analog]	1582
OCH ₂ C ₆ H ₃ Cl ₂ -2,6	CH ₂ —CHMgBr (10% Cul)	THF, -30°	OH OCH ₂ C ₆ H ₃ Cl ₂ -2,6 (85)	1583 1584
R	CH3MgI (-% CuCl)	Ether, THF, 0°	[Muscanne]	1585
TEDMSO	CH3OC=CMgBr SCH3 (cat. LizCuCl4)	THF, - 78 to 25°, 5.5 h	TBDMSO CECOCH ₃ (85) [Mycophenolic acid]	1580

TABLE XI. ORGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL PRODUCTS (Continued)

Substrate	Organocopper Reagent	Reaction Conditions	Product(s) and Yield(s) (%) (Target Molecule)	Ref
TsOOBn	MgBr (cat. Li ₂ CuCl ₄ )	THF, 25°, 2.5 d	(90-95) [Palytoxin]	1587
СН₃С═СН	CH ₂ =CH(CH ₂ ) ₂ MgBr (cat. CuX)	1.— 2. O	OH [Palytoxin] (75)	1588
ОН	n-C15H31MgBr (10% Cul)	THF, -40 to 20°, 14 h	(-)	1589
CH3O2C OCH3	CH2==CHMgBr (3 eq) (cat. Cul)	<ol> <li>1. THF, HMPA (3 eq), TMSCI, −78°, 10 b</li> <li>2. DMAP, −78 to −45°</li> </ol>	CH ₃ O ₂ C OCH ₃ TMSO (75-100)	1590
CH ₂ O ₂ CCH ₃	BrMg(CH ₂ ) ₃ CH(OC ₂ H ₃ ) ₂ (cat. Li ₂ CuCl ₄ )	THF, -15°, 2 h	[secoxyloganin aglucone] $(CH_2)_4CH(OC_2H_3)_2$ (62) [(±)-Solanapyrone A]	1591
TEDMSO	CH2=C(CH3)(CH2)2MgI (cat. Cul)	-	TBDMSO OH (52) [(-)-Sydowic acid]	1592
TsOCH ₂ OH OH OH	n-C7H15MgBr (cat. Li2CuCl4)	THF	$ \begin{array}{c} n - C_g H_{17} \\ O H \\ O H \\ O \end{array} $ (-)	1593
P(C ₆ H P(C ₆ H P(C ₆ H	C ₆ H ₅ (C ₆ H ₅ ) ₂ CuMgX (2 eq) I ₅ ) ₃	Ether, THF, -15 to 0°, 45 min	$[(+)-Tetrahydrocerulenin)$ $CH_2COC_6H_5$ $O$ $P(C_6H_5)_3$ $O-O_2NC_6H_4CH_2O_2C$ (66)	1594
(CH ₂ ) ₃ OTHP (CH ₂ ) ₉ OTs	n-C ₆ H ₁₃ (0.2% Li ₂ CuCl ₄ )	THF, 0–20°, 4 h	[Thienamycin analogs] (CH ₂ ) ₃ OTHP (CH ₂ ) ₉ (CH ₂ ) ₉ (86) (CH ₂ ) ₉ (86) (Tuberculostearic acid]	1595
TsOCH ₂ CH ₃ CO ₂	CH ₃ MgBr (cat. Li ₂ CuCl ₄ )	THF, 50°, 4 h	CH ₃ CO ₂ (99)	1596
ch40×0×4	n-C3H7MgBr (-% Cul)	THF	$CH_{30} \xrightarrow{OH} C_{3}H_{7}-n + (-)$	1597

TABLE AL. ORGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL FRODUCTS (CO	onanuei	a)
-----------------------------------------------------------------------	---------	----

T [Zincophorin]

Substrate	Organocopper Reagent	Reaction Conditions	Product(s) and Yield(s) (%) (Target Molecule)	Refs
		b. Lithiocuprates, Substitutions		
	SC2H3 (P-CH3OC6H4CH2OCH2)2- OH CuLi	THF, 0°, 3 h	$\begin{bmatrix} OH & OH \\ + & COCH_2OCH_2C_4H_4OCH_3-p \end{bmatrix}$ [Adriamycinone]	1598
BnOCH ₂ H BnOCH ₂ H	(CH ₃ ) ₂ CuLi	Ether, -78 to -40°	BnOCH ₂ (100) BnOCH ₂ OH (100)	1599
OCH2SCH3 S	$Li_2(CN)Cu \qquad \qquad O \\ OTIPS = Si(C_1H_{TT}()_1]$	THF, -35 to -15°, 50 h	TIPSO OH OCH ₂ SCH ₃ (75)	1600
TBDMSO(CH ₂ ) ₂ TO CF ₃ SO	O OCH ₃ (CH ₃ ) ₂ CuLi	Ether, -5°, 4 h	[Aplasmomycin]	1601
CF3SO3	Y			
	CH3Li (30 eq), CuCN (20 eq)	THF, -4°, 38 h	EEO OBn OTBDPS [Avermectins]	1602
	(CH ₃ ) ₂ CuLi [°] CO ₂ CH ₃	Ether, $-78$ to $-47^{\circ}$	[Ascofuranone] (85) 1	1603
CF3S03	(CH ₃ ) ₂ CuLi	Ether, -40 to 20°	[Auramycinone] (64)	1604
CH ₂ Br Br	$\begin{pmatrix} n-C_5H_{11} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $	THF, 12 h	$\bigcup_{i=1}^{n} C_{i}H_{11}-n$ (100) 1	1605
	CH3 (CH2=CHCH2)2CuLi (3 eq)	THF, -70 to 0°, 2.5 h	ICarbacenem	1606
	(C ₂ H ₅ ) ₂ CuLi (3 eq)	Ether, -78°, 1 h	C ₂ H ₅ HOCH ₂ NHTs (80)	1607

TABLE XI. ORGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL PRODUCTS (Continued)



TABLE XI. ORGANO	OCOPPER COMPOUNDS	N SYNTHESIS OF	NATURAL	PRODUCTS	(Continued
------------------	-------------------	----------------	---------	----------	------------

Substrate	Organocopper Reagent	Reaction Conditions	Product(s) and Yield(s) (%) (Target Molecule)		Refs
CH ₃ O OCH ₃ CH ₃ O O OCH ₃	COCI (CH3)2CuLi	Ether, THF, - 78 to 0°, 3 h	OCH ₃ COCH ₃ OCH ₃ [7,9-Dideoxydauno- mycinope]	(80)	1618
	(CH ₂ =CH) ₂ Cu(CN)Li ₂ (1 eq BF ₃ ·Et ₂ O)	1. THF, −78° 2. ( <i>n</i> -C₄H ₉ )₄NF, THF	OBn OH OH [2,6-Dideoxyhexoses]	(75)	1619
0200113	[C ₆ H ₃ (CH ₃ ) ₂ Si] ₂ Cu(CN)Li ₂	THF, -50°, 2 h	Si(CH ₃ ) ₂ C ₆ H ₅	(74)	1620
H CH2O2CCH3 NHCO2C4IIo-r		THF, -78 to 0°, 5 h	[Dihydronepetalactone] OTBDMS CH ₂ O ₂ CCH ₃ NHCO ₂ C ₄ H ₉ -r OH [Echinocandin D]	(65)	1621
to an	(CH ₃ ) ₂ CuLi	THF, 0°	HO [Erythronolide B]	(41)	1622
HC=CCH(CH3)CHOHCH	H ₂ O ₃ S (CH ₃ ) ₂ CuLi (excess)	Ether, -20°, 20 h	HC=CCH(CH ₃ )- CHOHC ₂ H ₅ [Erythronolide B]	()	1623
TMSOOCH	(n-C4H9)2CuLi (3.5 eq)	Ether, $C_6H_6$ , $-78$ to $-5^\circ$ , $3h$	n-C ₆ H ₁₁ TMSO	(40)	1624
	(CH3)2CuLi	Ether, DME, 0°, 12 h		(85)	1625
r-C4H9O2CNH	C6H5 (CH3)2C0Li CO2C2H5	Ether, 0°, 2.5 h	[5-Fluorouracil prodrug] t-C ₄ H ₉ O ₂ CNH SCO ₂ C ₂ H ₅ [GABA-T inhibitor]	(75)	1626
CH3CO2	Hg-r (TBDMSOCu(CN)Li ₂	THF, -78 to 0°, 15 h	NHCO ₂ C ₄ H ₉ - <i>t</i> CH ₃ CO ₂ OH [(+)-Galantinic acid]	(51)	1627

Substrate	Organocopper Reagent	Reaction Conditions	Product(s) and Yield(s) (%) (Target Molecule)		Refs
н 2000 2	Η (π-C ₄ H ₉ ) ₂ CuLi (1.2 eq)	THF, -70°	$H \xrightarrow{H \to C_5H_{11} \cup H} OH \xrightarrow{H} O$	(40)	1628
Cs S	(n-C4H2)2Cu(CN)Li2	THF, -20°	$C_{3H_{11}-n}$	()	1629
	(CH ₃ ) ₂ CuLi	Ether, -20°, 75 min	((+)-Onecosporone] CH ₂ OBn H CO ₂ H (Iridomymecial	(84)	1630
(C ₆ H ₅ ) ₃ CO	( (BF3·Et2O)	Ether, -65°	(C ₆ H ₅ ) ₃ CO	(72)	1631
CH ₂ Br OCH ₃	OCH ₃ CaLi OCH ₃	THF, P(C ₄ H ₉ -n) ₃ , - 78 to 20°, 12 h	OCH ₃ CO ₂ CH ₃ CH ₃ O OCH ₃ [Islandicin]	(82)	1632
$\gamma^{\circ}$	n-C7H15Cu(CN)Li	Ether, -23 to 0°	n-C ₈ H ₁₇ OH [(-)-Isoavenaciolide]	(85)	1633
BROCH2 H	(CH3)2CuLi	Ether, pentane, DMS, 0°, 3 h	[Lasalocid A]	(90)	1634
OTBDMS	Li ₂ (CN)Cu ( OCH ₃ ) ₂	Ether, -40 to -20°, 28 h	HO, HO, TBDMSO OCH3	(35)	1635
Br	CH ₃ O CH ₃ O Cu(C $\equiv$ CC ₃ H ₇ -n)Li	THF, HMPA, -78°, 4.5 h	[Macbecins] CH ₃ O CH ₃ O CH ₃ O CH ₃ O CH ₃ O CH ₃ O CH ₂ D CH ₂	(62)	1636
$RO \xrightarrow{CO_2CH_3} O \xrightarrow{CO_3CH_3} O \xrightarrow{CH_3O} O \xrightarrow{CH_3O} O \xrightarrow{CH_3OC_6H_4C(C_6)} O \xrightarrow{CO_4OC_6H_4C(C_6)} O \xrightarrow{CO_4OC_6} O \xrightarrow{CO_4OC_6} O \xrightarrow{CO_4OC_6} O O O O O O O O O O O O O O O O O O O$	(CH3)2CuLi (2 eq) H5)2	Ether, 0°, 5 h	[(-)-Maysine] RO CH ₃ O [Maytansine]	(65)	1637
ВпО ОТВОЛ		THF, -30 to 20°, 6 h	HO OT	()	1638
			[(+)-Milbemycin β ₃ ]		

			1. 3		
TABLE XI.	ORGANOCOPPER COM	POUNDS IN SYNTHESI	S OF NATURAL	PRODUCTS (Con	tinued)

Substrate	Organocopper Reagent	Reaction Conditions	Product(s) and Yield(s) (%) (Target Molecule) R
CH302C COCI	(CH ₃ ) ₂ CuLi	THF, -78°, 30 min	(92) 16 CH ₃ O ₂ C COCH ₃ [Monensin A biosynthetic intermediate]
Сн₂он	(CH ₃ ) ₂ Cu(CN)Li ₂	_	(92)  16
	(TMSCH ₂ ) ₂ CuLI	Ether, -78°, 25 min	
o ^{oots}	(CH2==CH)2Cu(CN)Li2 (3 eq)	THF, -40 to 0°, 6 h	[Narbonolide] OH [Nonactic acid] (92) 16
C ₆ H ₅ C ₆ H ₅ -C ₄ H ₉ O ₂ C ⁻ N Br	(n-C4H9)2Cu(CN)Li2	Ether, THF, -78°	$C_6H_5 \qquad (48) \qquad 16$
CH3CO2 CH3CO2CH2 00	CCH3 CH3Cu(CN)Li	THF, -20°	[L-Norleucine] $CH_3CO_2CH_2$ $O$ $O$ $(80)$ 16 [Okadaic acid]
A ors	(n-C4H9)2CuLi	Ether, -20°	(47) 150 C ₄ H ₉ -n
C2H5O2C.	(CH ₃ ) ₂ CuLi	Ether, -78°	$C_2H_5O_2C$ OH $C_2C_2H_5$ (-) 16 (+) Phyllanthorin
BnOCOCI	(CH3)2CuLi (3 eq)	Ether, -78°	BnO COCH ₃ (75-80) 16 [(+)-Phyllanthocin]
HOW	(2-C ₃ H4NCH2)2Cu(CN)Li2	THF, -78°	
	OH (CH ₃ ) ₂ CuLi	Ether, -40 to -23°, 5.5 h	[(±)-Pulo'upone] OH (96) 16 [Rifamycin S] [Roflamycoin] see ref. 1650
Сн ₂ он	(CH3)2CuLi (5 eq)	Ether, $-20$ to $0^{\circ}$	OH (87) 10 CH ₂ OH (87) 10

TABLE XI	ORGANOCOPPER	COMPOLINDS IN S	VNTHESIS OF	NATURAL	PRODUCTS	(Continued)
TINDED THE	OROANOCOTTER	Com oonds no	THE THESIS OF	THUCKIL	INODUCIS	(commune)

Substrate	Organocopper Reagent	Reaction Conditions	Product(s) and Yield(s) (%) (Target Molecule) Ret
~~он	(CH3)2CuLi	Ether, -20°	OH OH OH I:1 [Protomycinolide IV]
C ₆ H ₅ O	² H ₃ ( <i>n</i> -C ₁₀ H ₂₁ ) ₂ Cu(CN)Li ₂	THF, 0°, 1 h	$ \begin{array}{c} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$
			OH (52)
→ JN J J	) (n-C4H9)2CuLi		[Spiculisport acid] OCH3 ONH (83) 165 [(+)-Statine]
H OCH ₂ OBn OCH ₃ OCH ₂ OH	(CH ₃ ) ₂ CuLi (10 eq)	1. Ether, DMS, 0°, 4h 2. TsOH, CHCl ₃ , 20°	OH H H H H H H H H H H H H H
TMSO C ₂ H ₅ O ₂ C Br	Cu(C≡CC₄H ₉ -n)Li CO₂C₂H₅	Ether, -78°, 18 h	TMSO $CO_2C_2H_5$ (85) 165 [Swazinecic acid]
BnOCH ₂ ZO CH ₂ ¢	(CH3)2CuLi OTs	Ether	BnOCH ₂ $to$ $to$ $c_2H_5$ (91) 1650
⊳-<°×	(C2H5) O Z CuLi	1. THF, 0 to 20° 2. aq HCl	[Talaromycin A] see ref. 1657 $C_2H_5$ HOCH ₂ $C_2$ $(-)$ 165 HOCH ₂ $C_2$ $C_$
C ₆ H ₅ OCNH C ₆ H ₅ CO ₂ CH ₂ O	$H_2OT_5$ $\begin{pmatrix} n-C_6H_{13} \\ O \\ O \\ 0 \end{pmatrix}_2$ CuL	i Ether, HMPT	$(26) \qquad 165$
MOMO H H CH ₂ OH	(CH3)2CuLi	Ether, 11 h	[Thermozymocidin] $MOMO \rightarrow OBn$ $HOCH_2 \rightarrow OH$ [Tirandomucia axid]
HOCH2 CH	GCH3)2CuLi H2O2CC4H9-1	Ether, $-20^{\circ}$	[1 Irandamycic acid] OH OTHP HOCH ₂ $CH_2O_2CC_4H_{9^{-1}}$ (96) 166 [Tirandamycin A]



- --



Substrate	Organocopper Reagent	Reaction Conditions	Product(s) and Yield(s) (%) (Target Molecule)		Refs
Å	$(CH_{30} \sim N)_{2}^{OCH_{3}}$	THF, DMS, -70°	CH30 N CH3	(71)	1681
$\langle \circ \rangle$	(CH3)2CuLi (BF3·Et2O)		[8-Oxoamino acids]	(92)	1588
CN CO2C	[3,4,5-(CH3O)3C4H2]2CuLi CH3	-	[Quercus lactone] see ref. 1683 P (Quercus lactone] see ref. 1683 P (CN $3,4,5-(CH_3O)_3C_6H_2$ (CO ₂ CH ₃ )	(80)	1684
	(CH3)2CuLi	<ol> <li>Ether, -20°, 1 h</li> <li>TMSCI</li> <li>Pd(OAc)₂, CH₃CN, 20°, 92 h</li> </ol>	[Podophyluotoxin] H CO ₂ CH ₃ OEE [Prelog-Djerassi lactone]	(62)	1685
$EC \equiv C C$ OR OR OR R = TMSCH ₂ CH ₂ OCH ₂ F = CO C H	≡CE (CH3)2CuLi	THF, 78°	E OR OR OR E [Rifamycin ansa chain]	()	1686
HC=CCO ₂ C ₂ ,13		THF, DMS, -78°, 1 h C(CH ₃ ) ₂ OCH ₃ ]Li	Fofo CO2CH3	()	1687
	CH2=CH(CH2)3Li (1.8 eq) (1 eq CuI·DMS)	1. Ether, THF, -78°, 14 h 2. TMSCl, -78°, 2 h 3. 10% HCl	[Tirandamycin A] OTBDMS H $CH_2=CH(CH_2)_2^2$ H OHC H OHC H H OHC H OHC H OHC H OHC H OHC H OHC H OHC H OHC H OHC H OHC H OHC H OHC H OHC H OHC H OHC H OHC H OHC H OHC H OHC H OHC H OHC H OHC H OHC H OHC H OHC H OHC H OHC H OHC H OHC H OHC H OHC H OHC H OHC H OHC H OHC H OHC H OHC H H OHC H OHC H H OHC H H H H H H H H	(91)	1688
<u>u</u>	(10  cq)	Ether, toluene, BF3.Et2O, -78 to -30°	96.7% de [Norpeckinatone]	(83)	1689
j.	$\begin{array}{c} C_2H_3 \\ OBn \\ [2 eq P(C_4H_{5^{en}})_3] \end{array}$	1. Ether, -35°, 1.5 h 2. <i>n</i> -C ₄ H ₂ Li 3. CIP(O)(OC ₂ H ₅ ) ₂	C ₂ H ₅ OBn	(87)	1690

TABLE XI. ORGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL PRODUCTS (Continued)



TABLE XI. ORGANOCOPPER COMPOUNDS IN SYNTHESIS OF NATURAL PRODUCTS (Continued)

## 6. Acknowledgments

We warmly express our thanks and appreciation to Debbie Reuter, Bill Hagen, Todd Elworthy, Emiliano Garcia, Bob Crow, and Kathy Mostafaie, who assisted with the hand-searching through thousands of journal pages looking for uses of organocopper chemistry, to Drs. Robert Wilhelm and Keith McCarthy (Syntex) and Joe Kozlowski (Schering-Plough) for their comments, and to our former collaborators at G. D. Searle (Jim Behling, John Ng, Bob Shone, Kevin Babiak, and Paul Collins) for their valued input. Extensive feedback from numerous colleagues, whose work is cited in this review, was also essential. These include Professors R. A. J. Smith, C. Ullenius, and G. H. Posner (mechanism); J. A. Marshall, P. Helquist, and Dr. A. Alexakis (Grignard reagents); Professors E. C. Ashby, J. F. Normant (L.O. Li cuprates); Y. Yamamoto, E. Piers, and R. Rieke (organocopper complexes); R. Linderman and I. Fleming (H.O. cuprates); and P. Knochel and J. Stryker (miscellaneous reactions). Various parts of the tabular survey on uses of copper reagents in natural product chemistry were graciously examined by Professors R. D. Little, A. C. Oehlschlager, K. Mori, and R. Noyori. Special thanks go to Dr. S. Sharma and Professor L. S. Hegedus for critiquing the entire manuscript, and to Ms. Patricia K. Ure for preparing the typewritten version. Considerable credit is also due to representatives of Organic Reactions who assisted with the preparation of the manuscript.

Financial support for the preparation of this chapter was provided in large measure by the International Copper Research Association, Inc., and the A. P. Sloan and Camille and Henry Dreyfus Foundations, for which we are most grateful. Finally, we are pleased to acknowledge the continued support of our programs in organocopper chemistry by the National Science Foundation and the donors of Petroleum Research Fund, administered by the American Chemical Society.

## References

- 1. G. H. Posner, Org. React., **19**, 1 (1972); G. H. Posner, Org. React., **22**, 253 (1975).
- 2. G. H. Posner, An Introduction to Synthesis Using Organocopper Reagents, Wiley, New York, 1980.
- J. P. Collman and L. S. Hegedus, *Principles and Applications of Organotransition Metal Chemistry*, University Science Books, Mill Valley, CA, 1980. For an updated version, see J. P. Collman, L. S. Hegedus, J. R. Norton, and R. G. Finke, *Principles and Applications of Organotransition Metal Chemistry*, University Science Books, Mill Valley, CA, 1987, p. 682.
- (a) J. F. Normant, J. Organomet. Chem. Lib., 1, 219 (1976); (b) J. F. Normant, Pure Appl. Chem., 50, 709 (1978); (c) A. E. Jukes, Adv. Organomet. Chem., 12, 215 (1974); (d) J. P. Marino, Ann. Rep. Med. Chem, 10, 327 (1975); (e) E. Erdik, Tetrahedron, 40, 641 (1984); (f) J. F. Normant and A. Alexakis, Synthesis, 1981, 841; (g) W. Carruthers, in *Comprehensive Organometallic Chemistry*, Vol. 7, G. Wilkinson, F. G. A. Stone, and E. W. Abel, Eds., Pergamon, New York, 1982, p. 661; (h) R. J. K. Taylor, Synthesis, 1985, 364; (i) Y. Yamamoto, Angew. Chem. Intl. Ed. Engl., 25, 947 (1986).
- 5. H. Gilman, R. G. Jones, and L. A. Woods, J. Org. Chem., **17**, 1630 (1952).
- For reviews on higher-order cyanocuprates see B. H. Lipshutz, Synthesis, **1987**, 325; Synlett, **1990**, 119. B. H. Lipshutz, R. S. Wilhelm, and J. A. Kozlowski, Tetrahedron, **40**, 5005 (1984).
- B. H. Lipshutz, J. A. Kozlowski, and C. M. Breneman, J. Am. Chem. Soc., **107**, 3197 (1985).
- 8. B. H. Lipshutz, J. A. Kozlowski, and R. S. Wilhelm, J. Org. Chem., **49**, 3943 (1984).
- 9. M. Tamura and J. K. Kochi, J. Organomet. Chem., 42, 205 (1972).
- 10. R. G. Pearson and C. D. Gregory, J. Am. Chem. Soc., 98, 4098 (1976).
- F. C. Anson, T. J. Collins, T. G. Richmond, B. D. Santarsiero, J. E. Toth, and B. G. R. T. Treco, J. Am. Chem. Soc., **109**, 2974 (1987) and references therein; D. W. Margerum, K. L. Chellappa, F. P. Bosso, and G. L. Burce, J. Am. Chem. Soc., **97**, 6894 (1975).
- 12. W. E. Keys, J. B. R. Dunn, and T. M. Loehr, J. Am. Chem. Soc., **99**, 4527 (1977).
- 13. P. J. M. W. L. Birker, J. Chem. Soc., Chem. Commun., 1977, 444.
- 14. D. Coucouvanis, F. J. Hollander, and M. L. Caffery, Inorg. Chem., **15**, 1853 (1976).

- P. J. H. A. M. van de Leemput, J. Willemse, and J. A. Cras, Rec. Trav. Chim. Pays-Bas, **95**, 54 (1976).
- 16. A. Tamaki and J. K. Kochi, J. Chem. Soc. Dalton Trans., 1973, 2620.
- 17. A. Tamaki and J. K. Kochi, J. Organomet. Chem., 64, 411 (1974).
- J. K. Kochi, Pure Appl. Chem. Suppl., 4, 377 (1971); see also J. K. Kochi, in Organometallic Mechanisms and Catalysis, Academic, New York, 1978, pp. 381–386.
- 19. C. R. Johnson and G. A. Dutra, J. Am. Chem. Soc., 95, 7777 (1973).
- 20. J. Fried, C. H. Lin, J. C. Sih, P. Dalven, and G. F. Cooper, J. Am. Chem. Soc., **94**, 4342 (1972).
- 21. B. H. Lipshutz and R. S. Wilhelm, J. Am. Chem. Soc., 104, 4696 (1982).
- 22. E. Hebert, Tetrahedron Lett., 23, 415 (1982).
- E. C. Ashby and D. Coleman, J. Org. Chem., **52**, 4554 (1987); E. C. Ashby, R. N. DePriest, A. Tuncay, and S. Srivastava, Tetrahedron Lett., **23**, 5251 (1982).
- 24. C. Guo, M. L. Brownawell, and J. San Filippo, J. Am. Chem. Soc., **107**, 6028 (1985).
- 25. A. Claesson and C. Sahlberg, J. Organomet. Chem., 170, 355 (1979).
- 26. P. Vermeer, J. Meijer, and L. Brandsma, Rec. Trav. Chim. Pays-Bas, 94, 112 (1975).
- 27. J. L. Luche, E. Barreiro, J. M. Dollat, and P. Crabbe, Tetrahedron Lett., **1975**, 4615.
- D. J. Pasto, S.-K. Chou, E. Fritzen, R. H. Shults, A. Waterhouse, and G. F. Hennion, J. Org. Chem., 43, 1389 (1978).
- 29. H. Kleijn, H. Westmijze, J. Meijer, and P. Vermeer, Rec. Trav. Chim. Pays-Bas, **99**, 340 (1980).
- 30. P. Savignac, A. Breque, C. Charrier, and F. Mathey, Synthesis, **1979**, 832.
- 31. E. J. Corey and N. W. Boaz, Tetrahedron Lett., 25, 3059 (1984).
- 32. H. Normant, J. Organomet. Chem., 100, 189 (1975).
- 33. J. Villieras, J.-R. Disnar, and J. F. Normant, J. Organomet. Chem., **81**, 281 (1974).
- 34. T. Cohen, J. Wood, and A. G. Dietz, Tetrahedron Lett., 1974, 3555.
- 35. A. Claesson and L.-I. Olsson, J. Chem. Soc., Chem. Commun., **1979**, 524.
- H. O. House, A. V. Prabhu, J. M. Wilkins, and L. F. Lee, J. Org. Chem., 41, 3067 (1976).
- 37. H. O. House and C.-Y. Chu, J. Org. Chem., 41, 3083 (1976).
- 38. J. March, *Advanced Organic Chemistry*, 3rd. ed., Wiley, New York, 1985, p. 310 and references therein.

- See also E. J. Corey and N. W. Boaz, Tetrahedron Lett., 25, 3063 (1984).
- 40. S. Hoz, J. Org. Chem., 47, 3545 (1982).
- 41. (a) H. O. House, W. C. McDaniel, R. F. Sieloff, and D. Vanderveer, J. Org. Chem., 43, 4316 (1978); (b) H. O. House and K. A. J. Snoble, *ibid.*, 41, 3076 (1976).
- 42. M. T. Rahman, A. R. Roy; and K. M. Hossain, J. Organomet. Chem., **127**, 105 (1977).
- 43. B. Akermark, M. Almemark, and A. Jutand, Acta Chem. Scand., Ser. B, **36**, 451 (1982).
- 44. G. Costa, A. Puxeddu, A. Camus, and N. Marsich, J. Organomet. Chem., **160**, 353 (1978).
- 45. B. H. Lipshutz, R. S. Wilhelm, S. T. Nugent, R. D. Little, and M. M. Baizer, J. Org. Chem., **48**, 3306 (1983).
- G. M. Whitesides, E. R. Stedronsky, C. P. Casey, and J. San Filippo, J. Am. Chem. Soc., **92**, 1426 (1970).
- 47. B. H. Lipshutz, R. S. Wilhelm, J. A. Kozlowski, and D. A. Parker, J. Org. Chem., **49**, 3928 (1984).
- 48. T. Ishihara, T. Maekawa, Y. Yamasaki, and T. Ando, J. Org. Chem., **52**, 300 (1987).
- 49. F. Babudri, L. Di Nunno, S. Florio, G. Marchese, and F. Naso, J. Organomet. Chem., **166**, 265 (1979).
- 50. G. H. Posner and K. A. Babiak, J. Organomet. Chem., 177, 299 (1979).
- 51. G. H. Posner, J.-S. Ting, and C. M. Lentz, Tetrahedron, 32, 2281 (1976);
  G. H. Posner and J.-S. Ting, Tetrahedron Lett., 1974, 683.
- 52. C. Gallina and P. G. Ciattini, J. Am. Chem. Soc., 101, 1035 (1979).
- 53. (a) H. L. Goering and C. C. Tseng, J. Org. Chem., **50**, 1597 (1985); (b)
  H. L. Goering, S. S. Kantner, and C. C. Tseng, *ibid.*, **48**, 715 (1983); (c)
  H. L. Goering and S. S. Kantner, *ibid.*, **46**, 2144 (1981).
- 54. E. J. Corey and J. Mann, J. Am. Chem. Soc., 95, 6832 (1973).
- 55. A. Kreft, Tetrahedron Lett., 1977, 1035.
- 56. C. B. Chapleo, M. A. W. Finch, T. V. Lee, and S. M. Roberts, J. Chem. Soc., Chem. Commun., **1979**, 676.
- 57. C. B. Chapleo, M. A. W. Finch, S. M. Roberts, G. T. Woolley, R. F. Newton, and D. W. Selby, J. Chem. Soc., Perkin Trans. 1, **1980**, 1847;
   S. M. Roberts, G. T. Woolley, and R. F. Newton, *ibid.*, **1981**, 1729.
- 58. C. L. Liotta, Tetrahedron Lett., **1975**, 523.
- 59. (a) H. L. Goering, S. S. Kanter, and E. P. Seitz, J. Org. Chem., 50, 5495 (1985); (b) H. L. Goering and V. D. Singleton, *ibid.*, 48, 1531 (1983); (c) H. L. Goering and S. S. Kantner, *ibid.*, 48, 721 (1983); (d) H. L. Goering,

E. P. Seitz, and C. C. Tseng, *ibid.*, **46**, 5304 (1981); (e) H. L. Goering and V. D. Singleton, J. Am. Chem. Soc., **98**, 7854 (1976).

- J. Levisalles, M. Rudler-Chauvin, and H. Rudler, J. Organomet. Chem., 136, 103 (1977).
- H. L. Goering and C. C. Tseng, J. Org. Chem., 48, 3986 (1983); H. L. Goering and S. S. Kantner, *ibid.*, 49, 422 (1984).
- 62. (a) C. C. Tseng, S. D. Paisley, and H. L. Goering, J. Org. Chem., **51**, 2884 (1986); (b) C. C. Tseng, S.-J. Yen, and H. L. Goering, *ibid.*, **51**, 2892 (1986).
- 63. (a) H. O. House, Acc. Chem. Res., 9, 59 (1976); (b) H. O. House and M. J. Umen, J. Org. Chem., 38, 3893 (1973); (c) H. O. House and M. J. Umen, J. Am. Chem. Soc., 94, 5495 (1972).
- 64. S. H. Bertz, G. Dabbagh, J. M. Cook, and V. Honkan, J. Org. Chem., **49**, 1739 (1984).
- 65. H. O. House and J. M. Wilkins, J. Org. Chem., 41, 4031 (1976).
- 66. H. O. House and J. M. Wilkins, J. Org. Chem., 43, 2443 (1978).
- G. van Koten and J. G. Noltes, in *Comprehensive Organometallic Chemistry*, G. Wilkinson, F. G. A. Stone, and E. W. Abel, Vol. 1, Eds., Pergamon, New York, 1982, p. 710.
- 68. (a) R. A. J. Smith and D. J. Hannah, Tetrahedron, **35**, 1183 (1979); (b)
  D. J. Hannah, R. A. J. Smith, I. Teoh, and R. T. Weavers, Aust. J.
  Chem., **34**, 181 (1981); (c) R. A. J. Smith and D. J. Hannah, Tetrahedron Lett., **1980**, 1081; (d) D. J. Hannah and R. A. J. Smith, *ibid.*, **1975**, 187.
- 69. R. A. Ruden and W. E. Litterer, *ibid.*, **1975**, 2043.
- 70. C. R. Johnson and G. A. Dutra, J. Am. Chem. Soc., 95, 7783 (1973).
- 71. C. P. Casey and M. C. Cesa, J. Am. Chem. Soc., 101, 4236 (1979).
- 72. S. R. Krauss and S. G. Smith, J. Am. Chem. Soc., 103, 141 (1981).
- 73. G. van Koten and J. G. Noltes, J. Organomet. Chem., 174, 367 (1979).
- 74. C. Frejaville, R. Jullien, H. Stahl-Lariviere, M. Wanat, and D. Zann, Tetrahedron, **38**, 2671 (1982).
- H. Riviere and P.-W. Tang, Bull. Soc. Chim. Fr., **1973**, 2455; *idem*, C. R. Hebd. Seance Acad. Sci. C, **274**, 1944 (1972); P. Four, H. Riviere, and P. W. Tang, Tetrahedron Lett., **1977**, 3879.
- 76. J. Berlan, J.-P. Baltioni, and K. Koosha, Bull. Soc. Chim. Fr. II, **1979**, 183.
- 77. G. Hallnemo, T. Olsson, and C. Ullenius, J. Organomet. Chem., 265, C22 (1984); *idem, ibid.*, 282, 133 (1985); G. Hallnemo and C. Ullenius, Tetrahedron, 39, 1621 (1983); *idem*, Tetrahedron Lett., 27, 395 (1986); B. Christenson, G. Hallnemo, and C. Ullenius, Chem. Scr., 27, 511 (1987).

- (a) E.-L. Lindstedt, M. Nilsson, and T. Olsson, J. Organomet. Chem.,
   334, 255 (1987); (b) M. Bergdahl, E.-L. Lindstedt, M. Nilsson, and T. Olsson, Tetrahedron, 44, 2055 (1988).
- 79. P. H. M. Budzelaar, P. J. J. A. Timmermans, A. Mackor, and E. J. Baerends, J. Organomet. Chem., **331**, 397 (1987).
- 80. E. J. Corey and N. W. Boaz, Tetrahedron Lett., 26, 6015 (1985).
- Y. Yamamoto, J. Yamada, and T. Uyehara, J. Am. Chem. Soc., **109**, 5820 (1987).
- (a) J. Berlan, Y. Besace, G. Pourcelot, and P. Cresson, J. Organomet. Chem., **256**, 181 (1983); (b) M. Huche, J. Aubouet, G. Pourcelot, and J. Berlan, Tetrahedron Lett., **24**, 585 (1983).
- P. Mangeney, A. Alexakis, and J. F. Normant, Tetrahedron Lett., 24, 373 (1983).
- 84. Y. Yamamoto, H. Yatagai, and K. Maruyama, J. Org. Chem., **44**, 1744 (1979).
- 85. J. Klein and R. Levene, J. Chem. Soc. Perkin Trans. 2, 1973, 1971.
- E. J. Corey and J. A. Katzenellenbogen, J. Am. Chem. Soc., 91, 1851 (1969).
- 87. J. B. Siddall, M. Biskup, and J. H. Fried, J. Am. Chem. Soc., **91**, 1853 (1969).
- J. Berlan, J.-P. Battioni, and K. Koosha, J. Organomet. Chem., **152**, 359 (1978).
- (a) J. Berlan and K. Koosha, J. Organomet. Chem., **153**, 107 (1978); (b) *idem, ibid.*, **153**, 99 (1978).
- 90. K. Koosha, J. Berlan, M.-L. Capmau, and W. Chodkiewicz, Bull. Soc. Chim. Fr., **1975**, 1284.
- H. Westmijze, J. Meijer, H. J. T. Bos, and P. Vermeer, Rec. Trav. Chim. Pays-Bas, **95**, 299 (1976).
- 92. M. S. Kharasch and O. Reinmuth, *Grignard Reactions of Nonmetallic Substances*, Prentice-Hall, New York, 1954.
- J. K. Kochi, Organometallic Mechanisms and Catalysis, Academic Press, New York, 1978, p. 374.
- 94. M. Kumada, Pure Appl. Chem., 52, 669 (1980).
- 95. H. P. Dang and G. Linstrumelle, Tetrahedron Lett., 1978, 191.
- 96. M. Tamura and J. Kochi, Synthesis, 1971, 303.
- 97. L. Friedman and A. Shani, J. Am. Chem. Soc., 96, 7101 (1974).
- 98. S. Nunomoto, Y. Kawakami, and Y. Yamashita, J. Org. Chem., **48**, 1912 (1983).
- 99. S. P. Tanis, Tetrahedron Lett., 23, 3115 (1982).
- 100. J. Drouin, F. Leyendecker, and J. M. Conia, Tetrahedron, 36, 1195

(1980).

- 101. J. F. Normant, J. Villieras, and F. Scott, Tetrahedron Lett., 1977, 3263.
- 102. S. K. Dasgupta, D. M. Rice, and R. G. Griffin, J. Lipid Res., **23**, 197 (1982).
- 103. T. A. Baer and R. L. Carney, Tetrahedron Lett., **1976**, 4697.
- 104. C. A. Elliger, J. Labelled Compd. Radiopharm., 20, 135 (1983).
- 105. M. B. Commercon and J. F. Normant, Bull. Soc. Chim. Fr., II, **1980**, 289.
- 106. F. Derguini-Boumechal, R. Lorne, and G. Linstrumelle, Tetrahedron Lett., **1977**, 1181.
- 107. A. Commercon, J. F. Normant, and J. Villieras, J. Organomet. Chem., **128**, 1 (1977).
- 108. K. Nutzel, *Houben-Weyl, Methoden der Organischen Chemie*, **13/2A**, Thieme, Stuttgart, 1973, p. 343.
- 109. A. S. Rao, S. K. Paknikar, and J. G. Kirtane, Tetrahedron, **39**, 2323 (1983).
- 110. C. Huynh, F. Derguini-Boumechal, and G. Linstrumelle, Tetrahedron Lett., **1979**, 1503.
- 111. G. Linstrumelle, R. Lorne, and H. P. Dang, Tetrahedron Lett., **1978**, 4069.
- 112. F. Henin and J. Muzart, Synth. Commun., 14, 1355 (1984).
- 113. C. Brockway, P. Kocienski, and C. Pant, J. Chem. Soc. Perkin Trans. 1, **1984**, 875.
- 114. For a review on allylic substitution with organometallic reagents, see R. M. Magid, Tetrahedron, 36, 1901 (1980).
- 115. T. Fujisawa, T. Sato, M. Kawashima, and M. Nakagawa, Chem. Lett., **1981**, 1307.
- 116. T. Sato, M. Takeuchi, T. Itoh, M. Kawashima, and T. Fujisawa, Tetrahedron Lett., **22**, 1817 (1981).
- 117. T. Fujisawa, T. Sato, M. Kawashima, K. Naruse, and K. Tamai, Tetrahedron Lett., **23**, 3583 (1982).
- 118. M. Julia, A. R. Tapie, and J. N. Verpeaux, Tetrahedron, **39**, 3283 (1983).
- 119. A. G. Ibragimov, D. L. Minsker, R. A. Saraev, and V. M. Dzhemilev, Izv. Akad. Nauk SSSR, Ser. Khim., **1983**, 2333.
- 120. M. B. Commercon, J. F. Normant, and J. Villieras, J. Chem. Res. (S), **1977**, 183; J. Chem. Res. (M), **1977**, 2101.
- 121. S. Araki and Y. Butsugan, J. Chem. Soc. Perkin Trans. I, **1984**, 969.
- 122. J. F. Normant, A. Commercon, M. Bourgain, and J. Villieras, Tetrahedron Lett., **1975**, 3833.
- 123. A. Commercon, M. Bourgain, M. Delaumeny, J. F. Normant; and J. Villieras, Tetrahedron Lett., **1975**, 3837.

- 124. Y. Gendreau and J. F. Normant, Tetrahedron, 35, 1517 (1979).
- 125. A. Claesson and C. Sahlberg, J. Organomet. Chem., 170, 355 (1979).
- 126. A. Claesson and C. Sahlberg, Tetrahedron Lett., 1978, 5049.
- 127. G. Cahiez, A. Alexakis, and J. F. Normant, Synthesis, 1978, 528.
- 128. L.-I. Olsson and A. Claesson, Acta Chem. Scand., Ser. B, **33**, 679 (1979).
- 129. I. Marek, P. Mangeney, A. Alexakis, and J. F. Normant, Tetrahedron Lett., **27**, 5499 (1986).
- 130. C. Sahlberg and A. Claesson, Acta Chem. Scand., Ser. B, **36**, 179 (1982).
- 131. G. Balme, M. Malacria, and J. Gore, Tetrahedron Lett., 1979, 7.
- 132. G. Balme, H. Malacria, and J. Gore, J. Chem. Res. (S), 1981, 244.
- 133. J.-L. Moreau and M. Gaudemar, J. Organomet. Chem., 108, 159 (1976).
- 134. A. Doutheau, G. Balme, M. Malacria, and J. Gore, Tetrahedron, **36**, 1953 (1980).
- 135. A. Alexakis, P. Mangeney, and J. F. Normant, Tetrahedron Lett., **26**, 4197 (1985).
- 136. G. Tadema, P. Vermeer, J. Meijer, and L. Brandsma, Rec. Trav. Chim. Pays-Bas, **95**, 66 (1976).
- 137. T. Sato, M. Kawashima, and T. Fujisawa, Tetrahedron Lett., **22**, 2375 (1981).
- 138. A. Claesson and C. Sahlberg, Tetrahedron Lett., **1978**, 1319.
- 139. B. Jousseaume, Ph.D. Thesis, University of Bordeaux, France (1977).
- 140. D. L. Comins and A. H. Abdullah, J. Org. Chem., 47, 4315 (1982).
- 141. D. L. Comins and E. D. Stroud, Heterocycles, 24, 3199 (1986).
- 142. H. Westmijze, H. Kleijn, J. Meijer, and P. Vermeer, Synthesis, **1979**, 432.
- 143. S. A. Bal, A. Marfat, and P. Helquist, J. Org. Chem., 47, 5045 (1982).
- 144. R. E. Abbott and T. A. Spencer, J. Org. Chem., 45, 5398 (1980).
- 145. A. Marfat and P. Helquist, Tetrahedron Lett., 1978, 4217.
- 146. J. G. Duboudin and B. Jousseaume, J. Organomet. Chem., **168**, 1 (1979).
- 147. J. G. Duboudin, B. Jousseaume, A. Alexakis, G. Cahiez, J. Villieras, and J. F. Normant, C.R. Acad. Sci. (Paris), Series C, 285, 29 (1977).
- 148. B. Jousseaume and J. G. Duboudin, Synth. Commun., 9, 53 (1979).
- 149. A. Alexakis, G. Cahiez, and J. F. Normant, J. Organomet. Chem., **177**, 293 (1979).
- 150. M. S. Kharasch and P. O. Tawney, J. Am. Chem. Soc., 63, 2308 (1941).
- 151. C. Cardellicchio, V. Fiandanese, G. Marchese, F. Naso, and L. Ronzini,

Tetrahedron Lett., 26, 4387 (1985).

- 152. A. J. Pearson, Tetrahedron Lett., 21, 3929 (1980).
- 153. I. W. Lawston and T. D. Inch, J. Chem. Soc. Perkin Trans. I, 1983, 2629.
- 154. H. Paulsen and W. Koebernick, Carbohydr. Res., 56, 53 (1977).
- 155. L. Jalander and M. Broms, Acta Chem. Scand., Ser. B, 37, 173 (1983).
- 156. B. R. Davis and S. J. Johnson, J. Chem. Soc., Perkin Trans. 1, **1979**, 2840.
- 157. Y. Horiguchi, S. Matsuzawa, E. Nakamura, and I. Kuwajima, Tetrahedron Lett., **27**, 4025 (1986).
- 158. (a) G. M. Villacorta, C. P. Rao, and S. J. Lippard, J. Am. Chem. Soc., **110**, 3175 (1988); (b) see reference 50 in (a), and K.-H. Ahn, R. B. Klassen, and S. J. Lippard, Organometallics, **9**, 3178 (1990).
- 159. A. Commercon, J. F. Normant, and J. Villieras, Tetrahedron, **36**, 1215 (1980); *idem*, Tetrahedron Lett., **1975**, 1465.
- 160. P. J. Stang and T. Kitamura, J. Am. Chem. Soc., **109**, 7561 (1987).
- 161. J. K. Stille and J. H. Simpson, J. Am. Chem. Soc., **109**, 2138 (1987); R. F. Heck, *Palladium Reagents in Organic Synthesis*, Academic, New York, 1985.
- 162. C. Lion, J.-E. Dubois, and Y. Bonzougou, J. Chem. Res. (S), **1978**, 46;J. Chem. Res. (M), **1978**, 826.
- 163. D. E. Bergbreiter and J. M. Killough, J. Org. Chem., 41, 2750 (1976).
- 164. S. H. Bertz, G. Dabbagh, and L. M. Williams, J. Org. Chem., **50**, 4414 (1985).
- 165. P. Beak, J. Yamamoto, and C. J. Upton, J. Org. Chem., 40, 3052 (1975);
  F. Duus, in *Comprehensive Organic Chemistry*, vol. 3, D. Barton and W. D. Ollis, Eds., Pergamon, New York, 1979, pp. 391 and 429.
- 166. T. Sato, T. Kawara, M. Kawashima, and T. Fujisawa, Chem. Lett., **1980**, 571.
- 167. J. F. Normant, A. Alexakis, and G. Cahiez, Tetrahedron Lett., **21**, 935 (1980).
- 168. T. Fujisawa, T. Sato, T. Kawara, M. Kawashima, H. Shimizu, and Y. Ito, Tetrahedron Lett., **21**, 2181 (1980).
- 169. H. J. Liu and L. K. Ho, Can. J. Chem., **61**, 632 (1983).
- 170. V. Calo, L. Lopez, G. Marchese, and G. Pesce, Synthesis, 1979, 885.
- 171. (a) V. Calo, L. Lopez, G. Pesce, and A. Calianno, J. Org. Chem., 47, 4482 (1982); (b) V. Calo, L. Lopez, and G. Pesce, J. Organomet. Chem., 231, 179 (1982).
- 172. (a) V. Calo, L. Lopez, and W. F. Carlucci, J. Chem. Soc., Perkin Trans.
  1, **1983**, 2953; (b) V. Calo, L. Lopez, and G. Pesce, J. Chem. Soc.,
  Chem. Commun., **1986**, 1252.

- 173. A. Carpita and R. Rossi, Synthesis, 1982, 469.
- 174. D. P. Curran, M.-H. Chen, D. Leszcweski, R. L. Elliot, and D. M. Rakiewicz, J. Org. Chem., **51**, 1612 (1986).
- 175. J. A. Marshall and V. H. Audia, J. Org. Chem., 52, 1106 (1987).
- 176. H. Kleijn, H. Westmijze, and P. Vermeer, Tetrahedron Lett., 1978, 1133.
- 177. H. Kleijn, and P. Vermeer, J. Organomet. Chem., **292**, 437 (1985).
- 178. J. M. Oostveen, H. Westmijze, and P. Vermeer, J. Org. Chem., **45**, 1158 (1980).
- 179. H. Kleijn, J. Meijer, H. Westmijze, and P. Vermeet, Rec. Trav. Chim. Pays-Bas, **96**, 251 (1977).
- 180. J. Meijer and P. Vermeer, Rec. Trav. Chim. Pays-Bas, 93, 183 (1974).
- 181. R. Baudouy, F. Delbecq, and J. Gore, Tetrahedron, **36**, 189 (1980).
- 182. T. L. Macdonald, D. R. Reagan, and R. S. Brinkmeyer, J. Org. Chem., 45, 4740 (1980).
- 183. H. Westmijze and P. Vermeer, Synthesis, **1979**, 390.
- 184. E. A. Oostveen, C. J. Elsevier, J. Meijer, and P. Vermeer, Rec. Trav. Chim. Pays-Bas, **101**, 382 (1982).
- 185. H. Westmijze, J. Meijer, H. J. T. Bos, and P. Vermeer, Rec. Trav. Chim. Pays-Bas, **95**, 299 (1976).
- 186. P. Vermeer, H. Westmijze, H. Kleijn, and L. A. van Dijck, Rec. Trav. Chim. Pays-Bas, **97**, 56 (1978).
- 187. S. H. Bertz and G. Dabbagh, J. Org. Chem., 49, 1119 (1984).
- 188. H. Kleijn, C. J. Elsevier, H. Westmijze, J. Meijer, and P. Vermeer, Tetrahedron Lett., **1979**, 3101.
- 189. D. Bernard and A. Doutheau, Tetrahedron Lett., 26, 4923 (1985).
- 190. H. Kleijn, M. Tigchelaar, R. J. Bullee, C. J. Elsevier, J. Meijer, and P. Vermeer, J. Organomet. Chem., **240**, 329 (1982).
- 191. G. Tadema, R. H. Everhardus, H. Westmijze, and P. Vermeer, Tetrahedron Lett., **1978**, 3935.
- H. Westmijze and P. Vermeer, Tetrahedron Lett., **1979**, 4101; for a revision, see C. J. Elsevier, J. Meijer, H. Westmijze, P. Vermeer, and L. A. van Dijck, J. Chem. Soc., Chem. Commun., **1982**, 84.
- 193. For an early history on carbometallation and vinylcopper derivatives, see ref. 218b and the literature cited therein; see also reference 4f for a review.
- 194. J. F. Normant and M. Bourgain, Tetrahedron Lett., **1971**, 2583.
- A. Alexakis, J. F. Normant, and J. Villieras, J. Organomet. Chem., 96, 471 (1975); A. Alexakis, G. Cahiez, J. F. Normant, and J. Villieras, Bull. Soc. Chim. Fr., 1977, 693.
- 196. J. F. Normant, A. Alexakis, and J. Villieras, J. Organomet. Chem., 57,

C99 (1973); A. Alexakis, J. F. Normant, and J. Villieras, J. Mol. Cat., **1**, 43 (1975–1976).

- 197. J. K. Crandall and F. Collonges, J. Org. Chem., 41, 4089 (1976).
- 198. J. G. Duboudin, B. Jousseaume, and A. Bonakdar, J. Organomet. Chem., **168**, 227 (1979).
- 199. F. Scott, G. Cahiez, J. F. Normant, and J. Villieras, J. Organomet. Chem., **144**, 13 (1978).
- 200. H. Westmijze, H. Kleijn, J. Meijer, and P. Vermeer, Tetrahedron Lett., **1977**, 869.
- 201. H. Kleijn, M. Tigchelaar, J. Meijer, and P. Vermeer, Rec. Trav. Chim. Pays-Bas, **100**, 337 (1981).
- 202. A. Alexakis, G. Cahiez, J. F. Normant, and J. Villieras, Bull. Soc. Chim. Fr., 1977, 693. For earlier work on carbocuprations of other heteroatom-substituted acetylenes, see also (a) thioacetylenes: J. F. Normant, A. Alexakis, A. Commercon, G. Cahiez, and J. Villieras, C. R. Acad. Sci. Ser. C, 279, 763 (1974); P. Vermeer, J. Meijer, and C. de Graaf, Rec. Trav. Chim. Pays-Bas, 93, 24 (1974); (b) alkynylphosphine oxides: A. M. Aguiar and J. R. S. Irelan, J. Org. Chem., 34, 4030 (1969); (c) alkynylsulfones: J. Meijer and P. Vermeer, Rec. Trav. Chim. Pays-Bas, 94, 14 (1975); (d) alkynylphosphines: J. Meijer, H. Westmijze, and P. Vermeer, *ibid.*, 95, 102 (1976).
- 203. H. Westmijze, J. Meijer, and P. Vermeer, Tetrahedron Lett., 1977, 1823.
- 204. M. Obayashi, K. Utimoto, and H. Nozaki, Tetrahedron Lett., **1977**, 1805; *idem*, J. Organomet. Chem., **177**, 145 (1979).
- 205. E. Colvin, *Silicon in Organic Synthesis*, Butterworths, London, 1981; W.
  P. Weber, *Silicon Reagents for Organic Synthesis*, Springer-Verlag,
  Berlin, 1983; I. Fleming, in *Comprehensive Organic Chemistry*, vol. 3, D.
  H. R. Barton and W. D. Ollis, Eds., Pergamon, New York, 1979, p. 541;
  E. W. Colvin, in *Chemistry of the Metal-Carbon Bond*, vol. 4, S. Patai and F. R. Hartley, Eds., Wiley, New York, 1987, p. 540.
- 206. A. B. Levy, P. Talley, and J. A. Dunford, Tetrahedron Lett., 1977, 3545.
- 207. H. Westmijze, J. Meijer, and P. Vermeer, Rec. Trav. Chim. Pays-Bas, **96**, 168 (1977).
- 208. (a) J. F. Normant, G. Cahiez, C. Chuit, and J. Villieras, J. Organomet. Chem., **77**, 269 (1974); (b) J. F. Normant, C. Chuit, G. Cahiez, and J. Villieras, Synthesis, **1974**, 803.
- 209. H. Westmijze, J. Meijer, and P. Vermeer, Rec. Trav. Chim. Pays-Bas, **96**, 194 (1977).
- 210. G. Cahiez, D. Bernard, J. F. Normant, and J. Villieras, J. Organomet. Chem., **121**, 123 (1976).
- 211. A. Alexakis, G. Cahiez, and J. F. Normant, Synthesis, 1979, 826.

- 212. J. F. Normant, G. Cahiez, C. Chuit, and J. Villieras, Tetrahedron Lett., **1973**, 2407.
- 213. H. Westmijze, J. Meijer, and P. Vermeer, Tetrahedron Lett., 1975, 2923.
- 214. H. Westmijze, H. Kleijn, and P. Vermeer, Tetrahedron Lett., 1978, 3125.
- 215. A. Marfat, P. R. McGuirk, and P. Helquist, J. Org. Chem., **44**, 1345 (1979).
- 216. C. Chuit, G. Cahiez, J. F. Normant, and J. Villieras, Tetrahedron, **32**, 1675 (1976).
- 217. A. Alexakis, J. F. Normant, and J. Villieras, Tetrahedron Lett., **1976**, 3461.
- 218. (a) A. Marfat, P. R. McGuirk, and P. Helquist, Tetrahedron Lett., **1978**, 1363; (b) *idem*, J. Org. Chem., **44**, 3888 (1979); (c) R. S. Iyer and P. Helquist, Org. Syn., **64**, 1 (1985).
- 219. See footnote 5 in ref. 221.
- 220. E. Piers and I. Nagakura, J. Org. Chem., 40, 2694 (1975).
- 221. (a) N. Jabri, A. Alexakis, and J. F. Normant, Tetrahedron Lett., 24, 5081 (1983); (b) N. Jabri, A. Alexakis, and J. F. Normant, Tetrahedron, 42, 1369 (1986).
- 222. (a) M. B. Commercon, J. P. Foulon, and J. F. Normant, Tetrahedron Lett., 24, 5077 (1983); (b) J. P. Foulon, M. B. Commercon, and J. F. Normant, Tetrahedron, 42, 1389 (1986); (c) *idem, ibid.*, 46, 1399 (1986); (d) M. Gardette, A. Alexakis, and J. F. Normant, Tetrahedron, 41, 5887 (1985).
- 223. S. Danishefsky, Acc. Chem. Res., 14, 400 (1981).
- 224. G. Cahiez, J. F. Normant, and D. Bernard, J. Organomet. Chem., **94**, 463 (1975).
- 225. C. Germon, A. Alexakis, and J. F. Normant, Tetrahedron Lett., **21**, 3763 (1980); *idem*, Bull. Soc. Chim. Fr., **1984**, 377.
- 226. J. F. Normant, G. Cahiez, C. Chuit, and J. Villieras, J. Organomet. Chem., **77**, 281 (1974).
- 227. H. Westmijze and P. Vermeer, Synthesis, **1977**, 784.
- 228. T. Fujisawa, T. Sato, T. Kawara, and K. Noruse, Chem. Lett., **1980**, 1123.
- 229. H. Kleijn, H. Eijsinga, H. Westmijze, J. Meijer, and P. Vermeer, Tetrahedron Lett., **1976**, 947.
- 230. W. G. M. van den Hoek, J. Kroon, H. Kleijn, H. Westmijze, P. Vermeer, and H. J. T. Bos, J. Chem. Soc. Perkin Trans. 2, **1979**, 423.
- 231. H. Kleijn, H. Westmijze, A. Schaap, H. J. T. Bos, and P. Vermeer, Rec. Trav. Chim. Pays-Bas, **98**, 209 (1979).
- 232. M. Gill and R. W. Rickards, J. Chem. Soc. Perkin Trans. 1, 1981, 599.
- 233. M. T. Rahman, S. L. Saha, and A.-T. Hansson, J. Organomet. Chem., **199**, 9 (1980).
- 234. A. Alexakis, A. Commercon, J. Villieras, and J. F. Normant, Tetrahedron Lett., **1976**, 2313; A. Alexakis, A. Commercon, C. Coulentianos, and J. F. Normant, Tetrahedron, **40**, 715 (1984).
- 235. H. Nishiyama, M. Sasaki, and K. Itoh, Chem. Lett., **1981**, 905; *idem, ibid.*, **1981**, 1363.
- 236. M. T. Crimmins, S. W. Mascarella, and J. A. DeLoach, J. Org. Chem., **49**, 3033 (1984).
- 237. T. R. Hoye, A. S. Magee, and R. E. Rosen, J. Org. Chem., **49**, 3224 (1984).
- 238. S. E. Denmark and J. P. Germanas, Tetrahedron Lett., 25, 1231 (1984).
- 239. T. Kametani, M. Tsubuki, and H. Nemoto, J. Org. Chem., **45**, 4391 (1980).
- 240. M. B. Commercon, J. P. Foulon, and J. F. Normant, J. Organomet. Chem., **228**, 321 (1982).
- 241. M. Behforouz, T. T. Curran, and J. L. Bolan, Tetrahedron Lett., **27**, 3107 (1986).
- 242. G. H. Posner, D. J. Brunelle, and L. Sinoway, Synthesis, 1974, 662.
- 243. G. H. Posner, T. P. Kogan, and M. Hulce, Tetrahedron Lett., **25**, 383 (1984).
- 244. G. H. Posner, M. J. Chapdelaine, and C. M. Lentz, J. Org. Chem., 44, 3661 (1979).
- 245. J. Drouin and G. Rousseau, J. Organomet. Chem., 289, 223 (1985).
- 246. F. Leyendecker, J. Drouin, J. J. Deleesse, and J. M. Conia, Tetrahedron Lett., **1977**, 1591.
- 247. J. Drouin, F. Leyendecker, and J. M. Conia, Nouv. J. Chem., **2**, 267 (1978).
- 248. R. Sjoholm and P. Backlund, Finn. Chem. Lett., **1980**, 28.
- 249. L. Jalander, K. lambolieva, and V. Sundstrom, Acta Chem. Scand., Ser. B, **34**, 715 (1980).
- 250. B. H. Lipshutz, J. A. Kozlowski, C. M. Breneman, Tetrahedron Lett., **26**, 5911 (1985) and reference therein.
- 251. F. Leyendecker and F. Jesser, Tetrahedron Lett., 21, 1311 (1980).
- 252. G. van Koten and G. J. Noltes, J. Chem. Soc., Chem. Commun., **1972**, 940.
- 253. R. L. Funk and K. P. C. Vollhardt, J. Am. Chem. Soc., 102, 5253 (1980).
- 254. G. Pourcelot, J. Aubouet, A. Caspar, and P. Cresson, J. Organomet. Chem., **328**, C43 (1987).
- 255. T. Imamoto and T. Mukaiyama, Chem. Lett., **1980**, 45.

- 256. M. Huche, J. Berlan, G. Pourcelot, and P. Cresson, Tetrahedron Lett., **22**, 1329 (1981).
- 257. (a) F. Leyendecker, F. Jesser, D. Laucher, and B. Ruhland, Nouv. J. Chem., 9, 7 (1989); (b) F. Leyendecker, F. Jesser, and D. Laucher, Tetrahedron Lett., 24, 3513 (1983); (c) F. Leyendecker, F. Jesser, and B. Ruhland, *ibid.*, 22, 3601 (1981).
- 258. P. Four, Ph. LeTri, and H. Riviere, J. Organomet. Chem., **133**, 385 (1977).
- 259. (a) E. C. Ashby and A. B. Goel, J. Org. Chem., 48, 2125 (1983); (b) E. C. Ashby, A. B. Goel, and R. S. Smith, J. Organomet. Chem., 212, C47 (1981).
- 260. A. B. Goel and E. C. Ashby, Inorg. Chim. Acta, 54, L199 (1981).
- 261. E. C. Ashby, R. S. Smith, and A. B. Goel, J. Org. Chem., **46**, 5133 (1981).
- 262. H. Westmijze, A. V. E. George, and P. Vermeer, Rec. Trav. Chim. Pays-Bas, **102**, 322 (1983).
- 263. H. O. House and W. F. Fischer, J. Org. Chem., 33, 949 (1968).
- 264. For some representative examples, see reference 262.
- 265. E. J. Corey and D. Beames, J. Am. Chem. Soc., 94, 7210 (1972).
- 266. E. J. Corey, D. M. Floyd, and B. H. Lipshutz, J. Org. Chem., **43**, 3418 (1978).
- 267. J. Enda, T. Matsutani, and I. Kuwajima, Tetrahedron Lett., **25**, 5307 (1984).
- 268. D. B. Ledlie and G. Miller, J. Org. Chem., 44, 1006 (1979).
- 269. T. Tsuda, T. Yazawa, K. Watanabe, T. Fujii, and T. Saegusa, J. Org. Chem., **46**, 192 (1981).
- G. H. Posner, C. E. Whitten, and J. J. Sterling, J. Am. Chem. Soc., 95, 7788 (1973); N. T. Luong-Thi and H. Riviere, Tetrahedron Lett., 1970, 1583.
- 271. (a) S. H. Bertz, G. Dabbagh, and G. M. Villacorta, J. Am. Chem. Soc., 104, 5824 (1982); (b) S. H. Bertz and G. Dabbagh, J. Chem. Soc., Chem. Commun., 1982, 1030; see also reference 277.
- 272. C. R. Johnson and D. S. Dhanoa, J. Chem. Soc., Chem. Commun., **1982**, 358.
- 273. C. R. Johnson and D. S. Dhanoa, J. Org. Chem., 52, 1885 (1987).
- 274. L. Hamon and J. Levisalles, J. Organomet. Chem., 251, 133 (1983); J.
  P. Gorlier, L. Hamon, J. Levisalles, and J. Wagnon, J. Chem. Soc., Chem. Commun., 1973, 88.
- 275. W. H. Mandeville and G. M. Whitesides, J. Org. Chem., **39**, 400 (1974).
- 276. J. L. Luche, C. Petrier, A. L. Gemal, and N. Zikra, J. Org. Chem., 47,

3805 (1982).

- 277. R. H. Schwartz and J. San Filippo, J. Org. Chem., 44, 2705 (1979).
- 278. B. Langstrom and S. Sjoberg, J. Labelled Comp. Radiopharm., **18**, 671 (1981).
- 279. M. E. Gangoda and R. K. Gilpin, J. Labelled Comp. Radiopharm., **19**, 283 (1982).
- 280. S. Raucher, Tetrahedron Lett., **1976**, 1161.
- 281. W. E. Willy, D. R. McKean, and B. A. Garcia, Bull. Chem. Soc. Jpn., **49**, 1989 (1976).
- 282. J. A. Bajgrowicz, A. E. Hallaoui, R. Jacquier, Ch. Pigiere, and Ph. Viallefont, Tetrahedron, **41**, 1833 (1985).
- 283. S. Terashima, C. C. Tseng, and K. Koga, Chem. Pharm. Bull., **27**, 747 (1979).
- 284. (a) H. Yamamoto, K. Kitatani, T. Hiyama, and H. Nozaki, J. Am. Chem. Soc., 99, 5816 (1977); (b) K. Kitatani, T. Hiyama, and H. Nozaki, Bull. Chem. Soc. Jpn., 50, 1600 (1977).
- 285. R. Mathias and P. Weyerstahl, Chem. Ber., 112, 3041 (1979).
- 286. J. E. McMurry and W. J. Scott, Tetrahedron Lett., 21, 4313 (1980).
- 287. L. Blaszczak, J. Winkler, and S. O'Kuhn, Tetrahedron Lett., **1976**, 4405.
- 288. F.-W. Sum and L. Weiler, Can. J. Chem., 57, 1431 (1979).
- 289. T. Ishihara, M. Yamana, and T. Ando, Tetrahedron Lett., **24**, 5657 (1983).
- 290. W. E. Truce, A. W. Borel, and P. J. Marek, J. Org. Chem., **41**, 401 (1976).
- 291. C. V. Maffeo, G. Marchese, F. Naso, and L. Ronzini, J. Chem. Soc. Perkin Trans. 1, **1979**, 92.
- 292. F. Babudri, L. D. Nunno, S. Florio, G. Marchese, and F. Naso, J. Organomet. Chem., **166**, 265 (1979).
- D. N. Harpp, S. M. Vines, J. P. Montillier, and T. H. Chan, J. Org. Chem., 41, 3987 (1976).
- 294. W. Chodkiewicz and D. Guillerm, Tetrahedron Lett., 1979, 3573.
- 295. G. Boche, M. Bernheim, and M. Niessner, Angew. Chem. Int. Ed. Engl., **22**, 53 (1983).
- 296. Y. Wakita, T. Kobayashi, M. Maeda, and M. Kojima, Chem. Pharm. Bull., **30**, 3395 (1982).
- 297. T. Tsuda, M. Miwa, and T. Saegusa, J. Org. Chem., 44, 3734 (1979).
- 298. G. M. Whitesides, J. San Fillipo, C. P. Casey, and E. J. Panek, J. Am. Chem. Soc., **89**, 5302 (1967).
- 299. A. Camus and N. Marsich, J. Organomet. Chem., 46, 385 (1972).

- 300. G. J. Lambert, R. P. Duffley, H. C. Dalzell, and R. K. Razdan, J. Org. Chem., 47, 3350 (1982).
- 301. N. P. Bullen, K. S. Chiheru, and F. G. Thorpe, J. Organomet. Chem., 195, 147 (1980).
- 302. M. Iwao, J. N. Reed, and V. Snieckus, J. Am. Chem. Soc., 104, 5531 (1982).
- 303. H. Yamamoto and K. Maruoka, J. Org. Chem., 45, 2739 (1980).
- 304. A. I. Meyers and P. D. Pansegrau, J. Chem. Soc., Chem. Commun., 1985, 690.
- 305. J. Villieras, A. Reliquet, and J. F. Normant, J. Organomet. Chem., **144**, 17 (1978).
- 306. R. C. Larock and D. R. Leach, Organometallics, 1, 74 (1982).
- 307. M. Brookhart, A. R. Pinhas, and A. Lukacs, Organometallics, **1**, 1730 (1982).
- 308. C. P. Casey, W. H. Miles, H. Tukada, and J. M. O'Connor, J. Am. Chem. Soc., **104**, 3761 (1982).
- 309. G. H. Posner and C. H. Whitten, Org. Syn., 55, 122 (1976).
- 310. B. L. Chenard, M. J. Manning, P. W. Raynolds, and J. S. Swenton, J. Org. Chem., **45**, 378 (1980).
- 311. J. P. Gillet, R. Sauvetre, and J. F. Normant, Synthesis, 1982, 297.
- 312. A. F. Sviridov, M. S. Ermolenko, D. V. Yashunsky, and N. K. Kochetkov, Tetrahedron Lett., 24, 4355 (1983).
- 313. E. J. Corey, P. B. Hopkins, S. Kim, S. Yoo, K. P. Nambiar, and J. R. Falck, J. Am. Chem. Soc., **101**, 7131 (1979).
- 314. D. B. Collum, J. H. McDonald, and W. C. Still, J. Am. Chem. Soc., **102**, 2120 (1980).
- 315. S. Kim and J. I. Lee, J. Chem. Soc., Chem. Commun., **1981**, 1231.
- 316. C. Jenny, P. Wipf, and H. Heimgartner, Helv. Chim. Acta, **69**, 1837 (1986).
- 317. R.-D. Acker, Tetrahedron Lett., **1977**, 3407.
- 318. R.-D. Acker, Tetrahedron Lett., **1978**, 2399.
- 319. J. M. Chong and K. B. Sharpless, Tetrahedron Lett., 26, 4683 (1985).
- 320. C. R. Johnson, R. W. Herr, and D. M. Wieland, J. Org. Chem., **38**, 4263 (1973).
- 321. B. C. Hartman, T. Livinghouse, and B. Rickborn, J. Org. Chem., **38**, 4346 (1973).
- 322. M. R. Johnson, T. Nakata, and Y. Kishi, Tetrahedron Lett., **1979**, 4343.
- 323. R. A. Amos and J. A. Katzenellenbogen, J. Org. Chem., **42**, 2537 (1977).

- 324. S. G. Davies and S. Wollowitz, Tetrahedron Lett., 21, 4175 (1980).
- 325. (a) I. Fleming and D. March, Synthesis, 1981, 560; (b) I. Fleming and N. K. Terrett, Tetrahedron Lett., 24, 4151 (1983).
- 326. T. L. Underiner and H. L. Goering, J. Org. Chem., 53, 1140 (1988).
- 327. P. Crabbe, J.-M. Dollat, J. Gallina, J. L. Luche, E. Velarde, M. L. Maddox, and L. Tokes, J. Chem. Soc. Perkin Trans. 1, **1978**, 730.
- 328. C. B. Chapleo, M. A. W. Finch, T. V. Lee, S. M. Roberts, and R. F. Newton, J. Chem. Soc., Chem. Commun., **1979**, 676.
- 329. C. B. Chapleo, M. A. W. Finch, S. M. Roberts, G. T. Woolley, R. F. Newton, and D. W. Selby, J. Chem. Soc. Perkin Trans. 1, **1980**, 1847.
- 330. J. P. Marino and J. S. Farina, J. Org. Chem., 41, 3213 (1976).
- 331. J. P. Marino and D. M. Floyd, Tetrahedron Lett., 1979, 675.
- 332. J. P. Marino and J. C. Jaen, J. Am. Chem. Soc., 104, 3165 (1982).
- 333. P. A. Wender, J. M. Erhardt, and L. J. Letendre, J. Am. Chem. Soc., **103**, 2114 (1981).
- 334. (a) Y. Tanigawa, H. Kanamaru, A. Sonoda, and S. I. Murahashi, J. Am. Chem. Soc., 99, 2361 (1977); (b) Y. Tanigawa, H. Ohta, A. Sonoda, and S. I. Murahashi, *ibid.*, 100, 4610 (1978); (c) Y. Tanigawa and S. I. Murahashi, J. Org. Chem., 45, 4536 (1980).
- 335. (a) J. Berlan and Y. Besace, Tetrahedron, 42, 4767 (1986); (b) J. Berlan,
  Y. Besace, G. Pourcelot, and P. Cresson, *ibid.*, 42, 4757 (1986); (c) J.
  Berlan, Y. Besace, D. Prat, and G. Pourcelot, J. Organomet. Chem.,
  264, 399 (1984).
- 336. (a) A. Bernardi, S. Cardani, T. Pilati, G. Poli, C. Scolastico, and R. Villa, J. Org. Chem., 53, 1600 (1988); (b) A. Bernardi, S. Cardani, G. Poli, and C. Scolastico, *ibid.*, 51, 5041 (1986).
- 337. R. Baudouy and J. Gore, J. Chem. Res. (S), **1981**, 278; J. Chem. Res. (M), **1981**, 3081.
- 338. P. Crabbe, E. Barreiro, J. M. Dollat, and J. L. Luche, J. Am. Chem. Soc., Chem. Commun., **1976**, 183.
- 339. J.-M. Dollat, J.-L. Luche, and P. Crabbe, J. Chem. Soc., Chem. Commun., **1977**, 761.
- 340. W. H. Pirkle and C. W. Boeder, J. Org. Chem., 43, 1950 (1978).
- 341. C. Sahlberg and A. Claesson, J. Org. Chem., **49**, 4120 (1984) and reference cited therein.
- 342. E. W. Logusch, Tetrahedron Lett., 1979, 3365.
- 343. H. Westmijze, H. Kleijn, and P. Vermeer, Tetrahedron Lett., 1977, 2023.
- 344. A. Alexakis, G. Cahiez, and J. F. Normant, Tetrahedron, **36**, 1961 (1980).
- 345. A. Alexakis, G. Cahiez, and J. F. Normant, J. Organomet. Chem., 177,

293 (1979).

- 346. A. Alexakis, G. Cahiez, and J. F. Normant, Synthesis, 1979, 826.
- 347. N. Jabri, A. Alexakis, and J. F. Normant, Tetrahedron Lett., 22, 959 (1981); idem, Bull. Soc. Chim. Fr. II, 1983, 321; idem, ibid., 1983, 332.
- 348. N. Jabri, A. Alexakis, and J. F. Normant, Tetrahedron Lett., 22, 3851 (1981).
- 349. A. Alexakis and J. F. Normant, Tetrahedron Lett., 23, 5151 (1982).
- 350. (a) C. Germon, A. Alexakis, and J. F. Normant, Synthesis, **1984**, 40; (b) *idem, ibid.*, **1984**, 43.
- 351. E. Piers and J. M. Chong, J. Chem. Soc. Chem. Commun., **1983**, 934; I. Fleming and M. Taddei, Synthesis, **1985**, 898.
- 352. S. D. Cox and F. Wudl, Organometallics, 2, 184 (1983).
- 353. J. K. Crandall, P. Battioni, J. T. Wehlacz, and R. Bindra, J. Am. Chem. Soc., 97, 7171 (1975).
- 354. A. Alexakis and J. F. Normant, Isr. J. Chem., 24, 113 (1984).
- 355. E. Nakamura, M. Isaka, and S. Matsuzawa, J. Am. Chem. Soc., **110**, 1297 (1988); for the asymmetric version, see M. Isaka and E. Nakamura, *ibid.*, **112**, 7428 (1990).
- 356. (a) R. K. Boeckman, K. J. Bruza, J. E. Baldwin, and O. W. Lever, J. Chem. Soc., Chem. Commun., **1975**, 519; R. K. Boeckman and M. Ramaiah, J. Org. Chem., **42**, 1581 (1977); (b) R. K. Boeckman and K. J. Bruza, *ibid.*, **44**, 4781 (1979); (c) *idem*, Tetrahedron Lett., **1977**, 4187.
- 357. (a) E. J. Corey and D. Enders, Tetrahedron Lett., **1976**, 11; (b) *idem*, Chem. Ber., **111**, 1362 (1978).
- 358. R. E. Gawley, E. J. Termine, and J. Aube, Tetrahedron Lett., **21**, 3115 (1980).
- 359. P. A. Grieco, C. L. J. Wang, and G. Majetich, J. Org. Chem., **41**, 726 (1976).
- 360. J. Ficini, P. Kahn, S. Falou, and A. M. Touzin, Tetrahedron Lett., **1979**, 67.
- 361. R. J. Linderman and A. Godfrey, Tetrahedron Lett., 27, 4553 (1986).
- 362. (a) J. P. Marino and R. J. Linderman, J. Org. Chem., 46, 3696 (1981);
  (b) *idem, ibid.*, 48, 4621 (1983).
- 363. P. A. Wender and S. L. Eck, Tetrahedron Lett., **1977**, 1245; P. A. Wender and A. W. White, J. Am. Chem. Soc., **110**, 2218 (1988).
- 364. M. J. Chapdelaine and M. Hulce, Org. React., 38, 225 (1990).
- 365. H. O. House and J. M. Wilkins, J. Org. Chem., 41, 4031 (1976).
- 366. R. M. Coates and L. O. Sandefur, J. Org. Chem., **39**, 275 (1974).
- 367. K. Yamamoto, M. Kanoh, N. Yamamoto, and J. Tsuji, Tetrahedron Lett.,28, 6347 (1987); K. Yamamoto, M. Iijima, and Y. Ogimura, *ibid.*, 23,

3711 (1982).

- 368. (a) S. Anderson, S. Jagner, M. Nilsson, and F. Urso, J. Organomet. Chem., **301**, 257 (1986); (b) A. T. Hansson and M. Nilsson, Tetrahedron, **38**, 389 (1982).
- 369. (a) H. Malmberg, M. Nilsson, and C. Ullenius, Acta Chem. Scand., Ser. B, 35, 625 (1981); (b) B. Gustafsson, G. Hallnemo, and C. Ullenius, *ibid.*, 34, 443 (1980); (c) A. T. Hansson, M. T. Rahman, and C. Ullenius, *ibid.*, 32, 483 (1978).
- 370. H. Malmberg, M. Nilsson, and C. Ullenius, Tetrahedron Lett., **23**, 3823 (1982).
- 371. R. K. Dieter and M. Tokles, J. Am. Chem. Soc., 109, 2040 (1987).
- 372. E. J. Corey, R. Naef, and F. J. Hannon, J. Am. Chem. Soc., **108**, 7114 (1986).
- 373. R. A. Kretchmer, J. Org. Chem., 37, 2744 (1972).
- 374. S. H. Bertz, G. Dabbagh, and G. Sundararajan, J. Org. Chem., **51**, 4953 (1986).
- 375. W. Langer and D. Seebach, Helv. Chim. Acta, 62, 1710 (1979).
- 376. F. Leyendecker and D. Laucher, Nouv. J. Chem., **9**, 13 (1985); *idem*, Tetrahedron Lett., **24**, 3517 (1983).
- 377. T. Mukaiyama, T. Takeda, and K. Fujimoto, Bull. Chem. Soc. Jpn., **51**, 3368 (1978).
- 378. B. Gustaffson and C. Ullenius, Tetrahedron Lett., 1977, 3171.
- 379. D. Cabaret, N. Maigrot and Z. Welvart, J. Organomet. Chem., **182**, 257 (1979).
- 380. D. Seebach and J. Zimmermann, Helv. Chim. Acta, **69**, 1147 (1986); D. Seebach, J. Zimmerman, U. Gysel, R. Ziegler, and T.-K. Ha, J. Am. Chem. Soc., **110**, 4763 (1988).
- 381. P. Somfai, D. Tanner, and T. Olsson, Tetrahedron, 41, 5973 (1985).
- 382. S. G. Pyne, Tetrahedron Lett., 27, 1691 (1986).
- 383. V. Fiandanese, G. Marchese, and F. Naso, Tetrahedron Lett., **1978**, 5131.
- 384. P. Miginiac, G. Daviaud, and F. Gerard, Tetrahedron Lett., **1979**, 1811.
- 385. F. Barbot, A. K. Elban, and Ph. Miginiac, J. Organomet. Chem., **255**, 1 (1983).
- 386. F. Barbot, A. K. Elban, and Ph. Miginiac, Tetrahedron Lett., **24**, 5089 (1983).
- R. Bodalski, T. J. Michalski, and J. Monkiewicz, Phosphorous Sulfur, 9, 121 (1980).
- 388. R. Kupper and C. J. Michejda, J. Org. Chem., 45, 2919 (1980).
- 389. F. Rise, C. Romming, and K. Undheim, Acta Chem. Scand., Ser. B, 39,

459 (1985).

- 390. E. Schaumann and S. Fittkau, Synthesis, 1983, 449.
- 391. Y. K. Han, J. M. Park, and S. K. Choi, J. Polym. Sci., Polym. Chem. Ed., 20, 1549 (1982).
- 392. C. P. Casey and M. C. Cesa, J. Am. Chem. Soc., 101, 4236 (1979).
- 393. H. O. House, W. C. McDaniel, R. F. Sieloff, and D. Vanderveer, J. Org. Chem., **43**, 4316 (1978); H. O. House and K. A. J. Snoble, *ibid.*, **41**, 3076 (1976).
- 394. Y. Gaoni, A. Tomazic, and E. Potgeiter, J. Org. Chem., **50**, 2943 (1985);
  Y. Gaoni and A. Tomazic, Tetrahedron Lett., **23**, 5215 (1982).
- 395. A. Ghribi, A. Alexakis, and J. F. Normant, Tetrahedron Lett., **25**, 3075 (1984).
- 396. M. J. Eis and B. Ganem, Tetrahedron Lett., **26**, 1153 (1985).
- 397. A. Ghribi, A. Alexakis, and J. F. Normant, Tetrahedron Lett., **25**, 3079 (1984).
- 398. Y. Yamamoto, S. Yamamoto, H. Yatagai, and K. Maruyama, J. Am. Chem. Soc., **102**, 2318 (1980).
- 399. R. W. Rickards and H. Ronneberg, J. Org. Chem., 49, 572 (1984).
- 400. A. Ghribi, A. Alexakis, and J. F. Normant, Tetrahedron Lett., 25, 3083 (1984); A. Alexakis, P. Mangeney, A. Ghribi, D. Jachiet, and J. F. Normant, Phil. Trans. R. Soc. Lond. A, 326, 557 (1988).
- 401. S. D. Lindell, J. D. Elliott, and W. S. Johnson, Tetrahedron Lett., 25, 3947 (1984).
- 402. Y. Kojima and N. Kato, Tetrahedron Lett., 21, 4365 (1980).
- 403. E. C. Ashby and J. J. Lin, J. Org. Chem., 42, 2805 (1977).
- 404. E. C. Ashby, J. J. Lin, and J. J. Watkins, J. Org. Chem., 42, 1099 (1977).
- 405. (a) J. Berlan, J.-P. Battioni, and K. Koosha, Tetrahedron Lett., **1976**, 3351; (b) *idem, ibid.*, **1976**, 3355.
- 406. C. Jallabert, H. Riviere, and P. W. Tang, J. Organomet. Chem., **104**, 1 (1976).
- 407. C. Ouannes, G. Dressaire, and Y. Langlois, Tetrahedron Lett., **1977**, 815.
- 408. T. Ibuka, T. Aoyagi, K. Kitada, F. Yoneda, and Y. Yamamoto, J. Organomet. Chem., **287**, C18 (1985).
- 409. R. K. Olsen, W. J. Hennen, and R. B. Wardle, J. Org. Chem., **47**, 4605 (1982).
- 410. J. K. Cha and S. C. Lewis, Tetrahedron Lett., 25, 5263 (1984).
- 411. E. J. Corey and N. W. Boaz, Tetrahedron Lett., 26, 6019 (1985).
- 412. A. Alexakis, J. Berlan, and Y. Besace, Tetrahedron Lett., **27**, 1047 (1986).

- 413. H. Sakata and I. Kuwajima, *ibid.*, 28, 5719 (1987).
- 414. E. Nakamura, S. Matsuzawa, Y. Horiguchi, and I. Kuwajima, Tetrahedron Lett., **27**, 4029 (1986).
- 415. R. G. Salomon, D. B. Miller, S. R. Raychaudhuri, K. Avasthi, K. Lal, and B. S. Levison, J. Am. Chem. Soc., **106**, 8296 (1984).
- 416. H. O. House, W. L. Respess, and G. M. Whitesides, J. Org. Chem., **31**, 3128 (1966).
- 417. H. O. House and C.-Y. Chu, J. Org. Chem., 41, 3083 (1976).
- 418. E. C. Ashby and J. J. Watkins, J. Am. Chem. Soc., 99, 5312 (1977).
- 419. E. C. Ashby and J. J. Watkins, J. Chem. Soc., Chem., Commun., **1976**, 784.
- 420. J. San Filippo, Inorg. Chem., **17**, 275 (1978).
- 421. S. H. Bertz and G. Dabbagh, J. Am. Chem. Soc., 110, 3668 (1988).
- 422. H. O. House, C.-Y. Chu, J. M. Wilkins, and M. J. Umen, J. Org. Chem., 40, 1460 (1975).
- 423. R. L. Kleft and T. L. Brown, J. Organomet. Chem., 77, 289 (1974).
- 424. P. A. Scherr, R. J. Hogan, and J. P. Oliver, J. Am. Chem. Soc., **96**, 6055 (1974).
- 425. D. L. Clive, V. Farina, and P. L. Beaulieu, J. Org. Chem., **47**, 2572 (1982).
- 426. G. M. Whitesides, W. F. Fischer, J. San Filippo, R. W. Bashe, and H. O. House, J. Am. Chem. Soc., **91**, 4871 (1969).
- 427. H. O. House, D. G. Koespell, and W. J. Campbell, J. Org. Chem., **37**, 1003 (1972).
- 428. J. Berlan, K. Koosha, and J.-P. Battioni, Bull. Chim. Soc. Fr., 1978, 575.
- 429. See also, for allylic cuprates, D. K. Hutchinson and P. L. Fuchs, Tetrahedron Lett., **27**, 1429 (1986).
- 430. G. van Koten, J. T. B. H. Jastrzebski, F. Muller, and C. H. Stam, J. Am. Chem. Soc., **107**, 697 (1985).
- 431. H. Hope, D. Oram, and P. P. Power, J. Am. Chem. Soc., **106**, 1149 (1984).
- 432. P. G. Edwards, R. W. Gellert, M. W. Marks, and R. Bau, J. Am. Chem. Soc., **104**, 2072 (1982).
- 433. S. I. Khan, P. G. Edwards, H. S. H. Yuan, and R. Bau, J. Am. Chem. Soc., **107**, 1682 (1985).
- 434. G. van Koten, J. T. B. H. Jastrzebski, C. H. Stam, and C. Brevard, in *Biological & Inorganic Copper Chemistry*, K. D. Karlin and J. Zubieta, Eds., Adenine Press, 1985, pp. 267–285.
- 435. G. van Koten, J. T. B. H. Jastrzebski, and J. G. Noltes, J. Organomet. Chem., **140**, C23 (1977).

- 436. (a) G. van Koten, J. T. B. H. Jastrzebski, C. H. Stam, and N. C.
  Niemann, J. Am. Chem. Soc., **106**, 1880 (1984); (b) G. van Koten and J.
  G. Noltes, *ibid.*, **101**, 6593 (1979).
- 437. D. E. Bergbreiter, T. J. Lynch, and S. Shimazu, Organomet., **2**, 1354 (1983).
- 438. P. Leoni, M. Pasquali, and C. A. Ghilardi, J. Chem. Soc., Chem. Commun., **1983**, 240.
- 439. C. Eaborn, P. B. Hitcock, J. D. Smith, and A. C. Sullivan, J. Organomet. Chem., **263**, C23 (1984).
- 440. H. Hope, M. M. Olmstead, P. P. Power, J. Sandell, and X. Su, J. Am. Chem. Soc., **107**, 4337 (1985).
- 441. D. F. Dempsey and G. S. Girolami, Organometallics., 7, 1208 (1988).
- 442. S. F. Martin, J. R. Fishpaugh, J. M. Power, D. M. Giolando, R. A. Jones, C. M. Nunn, and A. H. Cowley, J. Am. Chem. Soc., **110**, 7226 (1988).
- 443. K. R. Stewart, J. R. Lever, and M.-H. Whangbo, J. Org. Chem., **47**, 1472 (1982).
- 444. A. H. Cowley, D. M. Giolando, R. A. Jones, C. M. Nunn, and J. M. Power, J. Chem. Soc., Chem. Commun., **1988**, 208.
- 445. For some representative reports on dihalocuprates, "[M⁺CuX₂⁻]_n", see M. Nilsson, Acta Chem. Scand. B, **36**, 125 (1982); M. Asplund, S. Jagner, and M. Nilsson, Acta Chem. Scand., Ser. A, **36**, 751 (1982) and references therein. See also S. Andersson and S. Jagner, Acta Chem. Scand., Ser. A, **42**, 691 (1988).
- 446. W. M. Latimer, *The Oxidation States of the Elements and Their Potentials in Aqueous Solutions*, 2nd ed., Prentice Hall, New York, 1952.
- 447. H. M. Walborsky and M. P. Periasamy, J. Organomet. Chem., **179**, 81 (1979).
- 448. P. D. Clarke, A. O. Filton, H. Suschitzky, T. W. Wallace, H. A. Dowlatshahi, and J. L. Suschitzky, Tetrahedron Lett., **27**, 91 (1986).
- 449. V. K. Kansal and R. J. K. Taylor, J. Chem. Soc. Perkin Trans. 1, **1984**, 703.
- 450. W. E. Truce and M. J. Lusch, J. Org. Chem., 43, 2252 (1978).
- 451. H. Kosugi, M. Kitaoka, K. Tagami, A. Takahashi, and H. Uda, J. Org. Chem., **52**, 1078 (1987).
- 452. S. G. Pyne, J. Org. Chem., **51**, 81 (1986).
- 453. D. E. Seitz and S. H. Lee, Tetrahedron Lett., 22, 4909 (1981).
- 454. Y. Yamamoto, H. Yatagai, K. Maruyama, A. Sonoda, and S.-I. Murahashi, J. Am. Chem. Soc., **99**, 5652 (1977).
- 455. Y. Yamamoto and K. Maruyama, J. Am. Chem. Soc., 100, 3240 (1978).
- 456. T. Cohen and M. D. Treblow, J. Org. Chem., 41, 1986 (1976).

- 457. P. Leoni and M. Pasquali, J. Organomet. Chem., 255, C31 (1983).
- 458. N. Marsich, A. Camus, and G. Nardin, J. Organomet. Chem., **239**, 429 (1982).
- 459. A. Miyashita and A. Yamamoto, J. Organomet. Chem., 113, 187 (1976).
- 460. A. Camus, N. Marsich, and G. Nardin, J. Organomet. Chem., **188**, 389 (1980).
- 461. A. Camus, N. Marisch, and G. Pellizer, J. Organomet. Chem., **259**, 367 (1983).
- 462. T. Tsuda, K. Ueda, and T. Saegusa, J. Chem. Soc., Chem. Commun., **1974**, 380.
- 463. T. Ibuka and H. Minakata, Synth. Commun., 10, 119 (1980).
- 464. Y. Yamamoto, S. Yamamoto, H. Yatagai, and K. Maruyama, J. Am. Chem. Soc., **102**, 2318 (1980).
- 465. Y. Yamamoto, S. Yamamoto, H. Yatagai, Y. Ishihara, and K. Maruyama, J. Org. Chem., **47**, 119 (1982).
- 466. Y. Yamamoto and K. Maruyama, J. Chem. Soc., Chem. Commun., **1984**, 904.
- 467. Y. Yamamoto, S. Nishii, and T. Ibuka, J. Chem. Soc., Chem. Commun., 1987, 464.
- 468. M. Suzuki, T. Suzuki, T. Kawagishi, Y. Morita, and R. Noyori, Isr. J. Chem., **24**, 118 (1984).
- 469. M. Suzuki, T. Suzuki, T. Kawagishi, and R. Noyori, Tetrahedron Lett., **21**, 1247 (1980).
- 470. T. Ibuka and E. Tabushi, J. Chem. Soc., Chem. Commun., **1982**, 703.
- 471. T. Ibuka, E. Tabushi, and M. Yasuda, Chem. Pharm. Bull., **31**, 128 (1983).
- 472. G. Helmchen and G. Wegner, Tetrahedron Lett., 26, 6051 (1985).
- 473. W. Oppolzer and H. J. Loher, Helv. Chim. Acta, 64, 2808 (1981).
- 474. W. Oppolzer, R. J. Mills, W. Pachinger, and T. Stevenson, Helv. Chim. Acta, **69**, 1542 (1986).
- 475. W. Oppolzer, P. Dudfield, T. Stevenson, and T. Godel, Helv. Chim. Acta, 68, 212 (1985).
- 476. D. K. Hutchinson and P. L. Fuchs, J. Am. Chem. Soc., 109, 4930 (1987).
- 477. C. R. Johnson and J. R. Medich, J. Org. Chem., 53, 4131 (1988).
- 478. A. B. Theis and C. A. Townsend, Synth. Commun., **11**, 157 (1981).
- 479. P. G. M. Wuts, Synth. Commun., **11**, 139 (1981).
- 480. (a) G. W. Ebert and R. D. Rieke, J. Org. Chem., **53**, 4482 (1988); *idem, ibid.*, **49**, 5280 (1984); (b) R. M. Wehmeyer and R. D. Rieke, Tetrahedron Lett., **29**, 4513 (1988).

- 481. R. M. Wehmeyer and R. D. Rieke, J. Org. Chem., 52, 5056 (1987).
- 482. (a) T.-C. Wu, R. M. Wehmeyer, and R. D. Rieke, J. Org. Chem., 52, 5057 (1987); (b) T.-C. Wu and R. D. Rieke, Tetrahedron Lett., 29, 6753 (1988).
- 483. N. Miyashita and A. Yamamoto, Bull. Chem. Soc. Jpn., **50**, 1102 (1977);
  T. Ikariya and A. Yamamoto, J. Organomet. Chem., **72**, 145 (1974).
- 484. A. Camus and N. Marsich, J. Organomet. Chem., **21**, 249 (1970); G. Costa, A. Camus, N. Marsich, and L. Gatti, *ibid.*, **8**, 339 (1967).
- 485. A. Camus, N. Marsich, G. Nardin, and L. Randaccio, Inorg. Chim. Acta, 23, 131 (1977).
- 486. (a) S. Gambarotta, S. Strologo, C. Floriani, A. Chiesi-Villa, and C. Guastini, Organometallics, 3, 1444 (1984); (b) A. H. Cowley, T. M. Elkins, R. A. Jones, and C. M. Nunn, Angew. Chem., Int. Ed. Engl., 27, 1349 (1988).
- 487. H. L. Aalten, G. van Koten, K. Goubitz, and C. H. Stam, J. Chem. Soc., Chem. Commun., **1985**, 1252.
- 488. S. Gambarotta, C. Floriani, A. Chiesi-Villa, and C. Guastini, J. Chem. Soc., Chem. Commun., **1983**, 1156.
- 489. J. G. Noltes, R. W. M. Ten Hoedt, G. van Koten, A. L. Spek, and J. C. Schoone, J. Organomet. Chem., **225**, 365 (1982).
- 490. S. H. Bertz and C. P. Gibson, J. Am. Chem. Soc., **108**, 8286 (1986). For subsequent discussions, however, see S. H. Bertz, *ibid.*, **112**, 4031 (1990); B. H. Lipshutz, S. Sharma, and E. L. Ellsworth, *ibid.*, **112**, 4032 (1990).
- 491. B. H. Lipshutz, J. A. Kozlowski, and R. S. Wilhelm, J. Org. Chem., **49**, 3943 (1984).
- 492. S. H. Bertz, C. P. Gibson, and G. Dabbagh, Tetrahedron Lett., **28**, 4251 (1987).
- 493. B. H. Lipshutz, R. S. Wilhelm, and D. M. Floyd, J. Am. Chem. Soc., **103**, 7672 (1981).
- 494. B. H. Lipshutz, R. S. Wilhelm, J. A. Kozlowski, and D. A. Parker, J. Org. Chem., **49**, 3928 (1984).
- 495. B. H. Lipshutz, J. A. Kozlowski, and R. S. Wilhelm, J. Am. Chem. Soc., **104**, 2305 (1982).
- 496. (a) B. H. Lipshutz, D. A. Parker, J. A. Kozlowski, and S. L. Nguyen, Tetrahedron Lett., 25, 5959 (1984); (b) B. H. Lipshutz, J. A. Kozlowski, D. A. Parker, S. L. Nguyen, and K. E. McCarthy, J. Organomet. Chem., 285, 437 (1985).
- 497. (a) T. Ibuka, T. Nakao, S. Nishii, and Y. Yamamoto, J. Am. Chem. Soc., 108, 7420 (1986); (b) T. Ibuka, H. Habashita, A. Otaka, N. Fujii, Y. Oguchi, T. Uyehara, and Y. Yamamoto, J. Org. Chem., 56, 4370 (1991).

- 498. A. Alexakis, D. Jachiet, and J. F. Normant, Tetrahedron, **42**, 5607 (1986).
- 499. B. H. Lipshutz, R. S. Wilhelm, and J. A. Kozlowski, J. Org. Chem., **49**, 3938 (1984).
- 500. B. H. Lipshutz, R. S. Wilhelm, and J. A. Kozlowski, Tetrahedron Lett., 23, 3755 (1982).
- 501. G. H. Posner, J. J. Sterling, C. E. Whitten, C. M. Lentz, and D. J. Brunelle, J. Am. Chem. Soc., **97**, 107 (1975).
- 502. R. J. Linderman, A. Godfrey, and K. Horne, Tetrahedron Lett., **28**, 3911 (1987).
- 503. R. J. Linderman and A. Godfrey, J. Am. Chem. Soc., 110, 6249 (1988).
- 504. J. R. Behling, K. A. Babiak, J. S. Ng, A. L. Campbell, R. Moretti, M. Koerner, and B. H. Lipshutz, J. Am. Chem. Soc., **110**, 2641 (1988).
- 505. (a) I. Fleming, T. W. Newton, and F. Roessler, J. Chem. Soc., Perkin Trans. 1, **1981**, 2527; I. Fleming and F. Roessler, J. Chem. Soc., Chem. Commun., **1980**, 276; (b) I. Fleming and T. W. Newton, J. Chem. Soc., Perkin Trans. 1, **1984**, 1805.
- 506. I. Fleming and F. J. Pulido, J. Chem. Soc., Chem. Commun., **1986**, 1010.
- 507. P. Cuadrado, A. M. Gonzalez, F. J. Pulido, and I. Fleming, Tetrahedron Lett., **29**, 1825 (1988).
- 508. H. Oda, Y. Morizawa, K. Oshima, and H. Nozaki, Tetrahedron Lett., **25**, 3217 (1984); *ibid.*, **25**, 3221 (1984).
- 509. C. Kappenstein, J. Bouquant, and R. P. Hugel, Inorg. Chem., **18**, 2615 (1979).
- 510. C. Kappenstein and R. P. Hugel, Inorg. Chem., 16, 250 (1977).
- 511. B. H. Lipshutz, E. L. Ellsworth, and T. J. Siahaan, J. Am. Chem. Soc., **110**, 4834 (1988).
- 512. B. H. Lipshutz, E. L. Ellsworth, T. J. Siahaan, and A. Shirazi, Tetrahedron Lett., **29**, 6677 (1988).
- 513. B. H. Lipshutz, J. A. Kozlowski, and R. S. Wilhelm, J. Org. Chem., **48**, 546 (1983).
- 514. W. C. Fultz, J. L. Burmeister, J. J. MacDougall, and J. H. Nelson, Inorg. Chem., **19**, 1085 (1980).
- 515. T. L. Ho, *Hard and Soft Acids and Bases Principle in Organic Chemistry*, Academic, New York, 1977.
- 516. T. Harayama, H. Fukushi, K. Ogawa, and F. Yoneda, Chem. Pharm. Bull., **33**, 3564 (1985).
- 517. R. K. Dieter, L. A. Silks, J. R. Fishpaugh, and M. E. Kastner, J. Am. Chem. Soc., **107**, 4679 (1985).

- 518. R. K. Dieter, R. J. Fishpaugh, and L. A. Silks, Tetrahedron Lett., **23**, 3751 (1982).
- 519. R. K. Dieter and L. A. Silks, III, J. Org. Chem., 51, 4687 (1986).
- 520. R. K. Dieter and M. Tokles, J. Am. Chem. Soc., 109, 2040 (1987). Links
- 521. H. Westmijze, H. Kleijn, M. Meijer, and P. Vermeer, Rec. Trav. Chim. Pays-Bas, **100**, 98 (1981); H. Westmijze, H. Kleijn, and P. Vermeer, J. Organomet. Chem., **276**, 317 (1984).
- 522. K. Nozaki, K. Wakamatsu, T. Nonaka, W. Tuckmantel, K. Oshima, and K. Utimoto, Tetrahedron Lett., **27**, 2007 (1986).
- 523. Y. Okuda, K. Wakamatsu, W. Tuckmantel, K. Oshima, and H. Nozaki, Tetrahedron Lett., 26, 4629 (1985); W. Tuckmantel, K. Oshima, and H. Nozaki, Chem. Ber., 119, 1581 (1986); K. Wakamatsu, T. Nonaka, Y. Okuda, W. Tuckmantel, K. Oshima, K. Utimoto, and H. Nozaki, Tetrahedron, 42, 4427 (1986).
- 524. J. Hibino, S. Matsubara, Y. Morizawa, K. Oshima, and H. Nozaki, Tetrahedron Lett., 25, 2151 (1984); S. Matsubara, J. Hibino, Y. Morizawa, K. Oshima, and H. Nozaki, J. Organomet. Chem., 285, 163 (1985).
- 525. H. Hayami, M. Sato, S. Kanemoto, Y. Morizawa, K. Oshima, and H. Noazki, J. Am. Chem. Soc., **105**, 4491 (1983).
- 526. S. Sharma and A. C. Oehlschlager, Tetrahedron Lett., 27, 6161 (1986).
- 527. H. C. Brown and J. B. Campbell, Jr., J. Org. Chem., 45, 550 (1980).
- 528. H. Yatagi, J. Org. Chem., 45, 1640 (1980).
- 529. R. A. Lynd and G. Zweifel, Synthesis, **1974**, 658.
- 530. G. Zweifel and R. L. Miller, J. Am. Chem. Soc., 92, 6678 (1970).
- 531. J. B. Campbell, Jr., and H. C. Brown, J. Org. Chem., 45, 549 (1980).
- 532. E. J. Corey and A. Tramontano, J. Am. Chem. Soc., 106, 462 (1984).
- 533. B. H. Lipshutz, E. L. Ellsworth, J. R. Behling, and A. L. Campbell, Tetrahedron Lett., **29**, 893 (1988).
- 534. S. H. Bertz, Organometallics, 7, 227 (1988).
- 535. B. H. Lipshutz, D. A. Parker, S. L. Nguyen, K. E. McCarthy, J. C. Barton, S. F. Whitney, and H. Kotsuki, Tetrahedron, **42**, 2873 (1986).
- 536. E. J. Corey, K. Kyler, and N. Raju, Tetrahedron Lett., 25, 5115 (1984).
- 537. (a) P. Knochel, M. C. P. Yeh, S. C. Berk, and J. Talbert, J. Org. Chem.,
  53, 2390 (1988); (b) M. C. P. Yeh and P. Knochel, Tetrahedron Lett.,
  29, 2395 (1988); (c) M. C. P. Yeh, P. Knochel, and L. E. Santa,
  Tetrahedron Lett., 29, 3887 (1988); (d) M. C. P. Yeh, P. Knochel, W.
  M. Butler, and S. C. Berk, Tetrahedron Lett., 29, 6693 (1988); (e) S. C.
  Berk, P. Knochel, and M. C. P. Yeh, J. Org. Chem., 53, 5789 (1988);
  (f) P. Knochel, J. Nakcheol, M. J. Rozema, and M. C. P. Yeh, J. Am.

Chem. Soc., 111, 6474 (1989); (g) H. G. Chen, C. Hoechstetter, and P. Knochel, Tetrahedron Lett., 30, 4795 (1989); (h) M. C. P. Yeh and P. Knochel, Tetrahedron Lett., 30, 4799 (1989); (i) P. Knochel, M. C. P. Yeh, and C. Xiao, Organometallics, 8, 2831 (1989); (j) T. N. Majid, M. C. P. Yeh, and P. Knochel, Tetrahedron Lett., **30**, 5069 (1989); (k) P. Knochel, T.-S. Chou, H.-G. Chen, M. C. P. Yeh, and M. J. Rozema, J. Org. Chem., 54, 5202 (1989); (I) C. Retherford, M. C. P. Yeh, I. Schipor, H.-G. Chen, and P. Knochel, J. Org. Chem., 54, 5200 (1989); (m) S. C. Berk, M. C. P. Yeh, N. Jeong, and P. Knochel, Organometallics, 9, 3053 (1990); (n) H. G. Chen, J. L. Gage, S. D. Barrett, and P. Knochel, Tetrahedron Lett., **31**, 1829 (1990); (o) C. Retherford, T.-S. Chou, R. M. Schelkun, and P. Knochel, Tetrahedron Lett., **31**, 1833 (1990); (p) C. E. Tucker, S. AchyuthaRao, and P. Knochel, J. Org. Chem., 55, 5446 (1990); (g) P. Knochel and S. AchyuthaRao, J. Am. Chem. Soc., **112**, 6146 (1990); (r) T.-S. Chou and P. Knochel, J. Org. Chem., 55, 4791 (1990); (s) P. Knochel, J. Am. Chem. Soc., 112, 7431 (1990); (t) T. N. Majid and P. Knochel, Tetrahedron Lett., 31, 4413 (1990); (u) S. AchyuthaRao, C. E. Tucker, and P. Knochel, Tetrahedron Lett., 31, 7575 (1990); (v) M. C. P. Yeh, H. G. Chen, and P. Knochel, Org. Synth., 70, 195 (1991); (w) C. Retherford and P. Knochel, Tetrahedron Lett., 32, 441 (1991); (x) S. AchyuthaRao and P. Knochel, J. Am. Chem. Soc., 113, 5735 (1991); (y) M. J. Rozema and P. Knochel, Tetrahedron Lett., 32, 1855 (1991); (z) C. JanakiramRao and P. Knochel, J. Org. Chem., 56, 4593 (1991); (aa) S. AchyuthaRao and P. Knochel, J. Org. Chem., **56**, 4591 (1991).

- 538. P. Knochel and J. F. Normant, Tetrahedron Lett., **27**, 4427 (1986); *idem, ibid.*, **27**, 4431 (1986).
- 539. H. Ochiai, Y. Tamaru, K. Tsabuki, and Z. Yoshida, J. Org. Chem., **52**, 4418 (1987).
- 540. D. J. Burton and L. G. Sprague, J. Org. Chem., **53**, 1523 (1988); M. Gaudemar, Tetrahedron Lett., **24**, 2749 (1983).
- 541. E. Nakamura and I. Kuwajima, J. Am. Chem. Soc., 106, 3368 (1984).
- 542. E. Nakamura, S. Aoki, K. Sekiya, H. Oshino, and I. Kuwajima, J. Am. Chem. Soc., **109**, 8056 (1987).
- 543. E. C. Ashby, J. J. Lin, and A. B. Goel, J. Org. Chem., 43, 183 (1978).
- 544. R. K. Boeckman and R. Machalak, J. Am. Chem. Soc., 96, 1623 (1974); see also T. Yoshida and E.-I. Negishi, J. Chem. Soc., Chem. Commun., 1974, 762; B. H. Lipshutz, C. S. Ung, and S. Sengupta, Synlett, 1989, 64.
- 545. M. F. Semmelhack and R. D. Stauffer, J. Org. Chem., 40, 3619 (1975);
  M. F. Semmelhack, R. D. Stauffer, and A. Yamashita, *ibid.*, 42, 3180 (1977);
  D. L. Comins and A. H. Abdullah, *ibid.*, 49, 3392 (1984).

- 546. M. E. Osborn, S. Kuroda, J. L. Muthard, J. D. Kramer, P. Engel, and L. A. Paquette, J. Org. Chem., 46, 3379 (1981); M. E. Osborn, J. F. Pegues, and L. A. Paquette, *ibid.*, 45, 167 (1980).
- 547. T. Tsuda, T. Hayashi, H. Satomi, T. Kawamoto, and T. Saegusa, J. Org. Chem., **51**, 537 (1986).
- 548. T. Tsuda, H. Satomi, T. Hayashi, and T. Saegusa, J. Org. Chem., **52**, 439 (1987).
- 549. S. A. Rao and M. Periasamy, J. Chem. Soc., Chem. Commun., **1987**, 495; *idem*, Tetrahedron Lett., **29**, 4313 (1988).
- 550. D. Masure, Ph. Coutrot, and J. F. Normant, J. Organomet. Chem., **226**, C55 (1982).
- 551. M. R. Churchill, S. A. Bezman, J. A. Osborn, and J. Wormald, Inorg. Chem., **11**, 1818 (1972); S. A. Bezman, M. R. Churchill, J. A. Osborn, and J. Wormald, J. Am. Chem. Soc., **93**, 2063 (1971).
- 552. B. Beguin, B. Denise, and R. P. A. Sneeden, J. Organomet. Chem., 208, C18 (1981); C. Biachini, C. A. Ghilardi, A. Meli, S. A. Middolini, and A. Orlandini, J. Organomet. Chem., 255, C27 (1983).
- 553. W. S. Mahoney, D. M. Brestensky, and J. M. Stryker, J. Am. Chem. Soc., **110**, 291 (1988); D. M. Brestensky, D. E. Huseland, C. McGettigan, and J. M. Stryker, Tetrahedron Lett., **29**, 3749 (1988).
- 554. L. E. Overman and C. Fukaya, J. Am. Chem. Soc., **102**, 1454 (1980).
- 555. T. Mase and M. Shibasaki, Tetrahedron Lett., 27, 5245 (1986).
- 556. L. Van Hijfte, R. D. Little, J. L. Petersen, and K. D. Moeller, J. Org. Chem., **52**, 4647 (1987).
- 557. F. E. Ziegler and B. H. Jaynes, Tetrahedron Lett., 29, 2031 (1988).
- 558. Y. Horiguchi, E. Nakamura, and I. Kuwajima, J. Org. Chem., **51**, 4323 (1986).
- 559. G. Cahiez, A. Alexakis, and J. F. Normant, Tetrahedron Lett., **1978**, 2027. For a review, see A. Alexakis, L'Actualite Chim., **1987**, 203.
- 560. R. Noyori and M. Suzuki, Angew. Chem., Int. Ed. Engl., 23, 847 (1984); for recent reviews, see M. Suzuki, Y. Morita, H. Koyano, M. Koga, and R. Noyori, Tetrahedron, 46, 4809 (1990); R. Noyori and M. Suzuki, Chemtracts, 3, 173 (1990).
- 561. M. Suzuki, A. Yanagisawa, and R. Noyori, J. Am. Chem. Soc., **107**, 3348 (1985).
- 562. M. Suzuki, A. Yanagisawa, and R. Noyori, J. Am. Chem. Soc., **110**, 4718 (1988); see also, M. Suzuki, T. Kawagishi, A. Yanagisawa, T. Suzuki, N. Okamura, and R. Noyori, Bull. Chem. Soc. Jpn., **61**, 1299 (1988).
- 563. C. R. Johnson and T. D. Penning, J. Am. Chem. Soc., **110**, 4726 (1988).
- 564. For a review on synthetic prostaglandings, see P. W. Collins, J. Med. Chem., **29**, 437 (1986).

- 565. J. M. Beau, S. Aburaki, J. R. Pougney, and P. Sinay, J. Am. Chem. Soc., 105, 621 (1983).
- 566. F. E. Ziegler, I. Chliwner, K. W. Fowler, S. J. Kanfer, S. J. Kuo, and N. D. Sinha, J. Am. Chem. Soc., **102**, 790 (1980).
- 567. J. Novak and C. A. Salemink, Synthesis, **1981**, 597.
- 568. J. K. Whitesell, R. M. Lawrence, and H.-H. Chen, J. Org. Chem., **51**, 4779 (1986).
- 569. P. Wijkens and P. Vermeer, J. Organomet. Chem., 301, 247 (1986).
- 570. R. K. Hill and T. F. Bradberg, Experientia, 38, 70 (1982).
- 571. R. G. Nelb and J. K. Stille, J. Am. Chem. Soc., 98, 2934 (1976).
- 572. H. M. Sirat, E. J. Thomas, and J. D. Wallis, J. Chem. Soc., Perkin Trans. 1, **1982**, 2885.
- 573. F. E. Ziegler and M. A. Cady, J. Org. Chem., 46, 122 (1981).
- 574. R. H. Wollenberg, K. F. Albizati, and R. Peries, J. Am. Chem. Soc., **99**, 7365 (1977).
- 575. D. J. Ager, I. Fleming, and S. K. Patel, J. Chem. Soc., Perkin Trans. 1, 1981, 2520; I. Fleming, R. Henning, and H. Plaut, J. Chem. Soc., Chem. Commun., 1984, 29.
- 576. D. F. Taber and C. H. Lee, J. Labelled Comp. Radiopharm., **14**, 599 (1978).
- 577. F. Derguini-Boumechal and G. Linstrumelle, Tetrahedron Lett., **1976**, 3225.
- 578. J. Nishimura, N. Yamada, Y. Horiuchi, E. Ueda, A. Ohleayashi, and A. Oku. Bull. Chem. Soc. Jpn., **59**, 2035 (1986).
- 579. M. Kadkhodayan, T. Singleton, and F. J. Heldrich, Synth. Commun., **14**, 707 (1984).
- 580. Y. S. Lee, L. del Valle, and G. L. Larson, Synth. Commun., **17**, 385 (1987).
- 581. T. Fujisawa, T. Mori, T. Kawara, and T. Sato, Chem. Lett., 1982, 569.
- 582. J. Yamashita, M. Minagawa, A. Sonobe, S. Ohashi, M. Kawamura, K. Shimizu, and H. Hashimoto, Chem. Lett., **1982**, 1409.
- 583. J. C. Stowell and B. T. King, Synthesis, 1984, 278.
- 584. J. F. Normant, T. Mulamba, F. Scott, A. Alexakis, and G. Cahiez, Tetrahedron Lett., **1978**, 3711.
- 585. R. A. Volkmann, J. T. Davis, and C. N. Meltz, J. Org. Chem., **48**, 1767 (1983).
- 586. K. Takamishi, H. Urabe, and I. Kuwajima, Tetrahedron Lett., **28**, 2281 (1987).
- 587. B. Maxwell and W. Kitching, Syntheses, **1977**, 317.
- 588. B. B. Snider and C. P. Cartaya-Marin, J. Org. Chem., 49, 153 (1984).

- 589. R. Okazaki, M. O-oka, N. Tokitah, and N. Inamoto, J. Org. Chem., **50**, 180 (1985).
- 590. K. A. Parker and T. Iqbal, J. Org. Chem., 52, 4369 (1987).
- 591. L. L. Zakharkin and A. P. Pryanishnikov, Izv. Akad. Nauk SSSR, Ser. Khim., **1982**, 2604.
- 592. G. Schill and C. Merkel, Chem. Ber., **111**, 1446 (1978).
- 593. N. Shimizu, F. Shileata, and Y. Tsuno, Bull. Chem. Soc. Jpn., **57**, 3017 (1984).
- 594. K. Tamao, R. Kanatani, and M. Kamada, Tetrahedron Lett., **25**, 1913 (1984).
- 595. R. Rossi, A. Carpita, and M. G. Quirici, Gazz. Chim. Ital., **111**, 173 (1981).
- 596. T. Fujisawa, S. Iida, H. Yukizaki, and T. Sato, Tetrahedron Lett., **24**, 5745 (1983).
- 597. F. Lehrich and H. Hopf, Tetrahedron Lett., 28, 2697 (1987).
- 598. Y. Naruta and K. Maruyama, Chem. Lett., 1987, 963.
- 599. H. Amri, M. Rambaud, and J. Villieras, J. Organomet. Chem., **308**, C27 (1986).
- 600. Y. Langlois, N. V. Bac, and Y. Fall, Tetrahedron Lett., 26, 1009 (1985).
- 601. S. Suzuki, M. Shiono, and Y. Fujita, Synthesis, 1983, 804.
- 602. T. Fujiwara, H. Yanagihara, T. Yamada, K. Suzuki, and T. Takeda, Chem. Lett., **1985**, 1629.
- 603. A. Hosomi, K. Hoashi, Y. Tominaga, K. Otaka, and H. Sakurai, J. Org. Chem., 52, 2947 (1987).
- 604. T. Shono, T. Nozoe, H. Mackawa, and S. Kashimura, Tetrahedron Lett., **29**, 555 (1988).
- 605. D. Samain, C. Descoins, and Y. Langlois, Nouv. J. Chem., **2**, 249 (1978).
- 606. L. L. Zakharkin and E. A. Petrushkina, Izv. Akad. Nauk SSSR, Ser. Khim., **1982**, 1181.
- 607. W. R. Roush and H. R. Gills, J. Org. Chem., 47, 4825 (1982).
- 608. B. M. Trost and C. A. Merlic, J. Am. Chem. Soc., **110**, 5216 (1988).
- 609. J. T. Gupton and W. J. Layman, J. Org. Chem., **52**, 3683 (1987).
- 610. E.-I. Negishi, Y. Zhang, F. E. Cederbaum, and M. B. Webb, J. Org. Chem., **51**, 4080 (1986).
- 611. G. Debris, J. Dunogues, and A. Gadras, Tetrahedron Lett., **25**, 2135 (1984).
- 612. K. Tamao, N. Ishida, and M. Kumada, J. Org. Chem., 48, 2120 (1983).
- 613. G. Teutsch and A. Belanger, Tetrahedron Lett., 1979, 2051.

- 614. T. Fujisawa, T. Itoh, M. Nakai, and T. Sato, Tetrahedron Lett., **26**, 771 (1985).
- 615. T. Itoh, A. Yoshinaka, T. Sato, and T. Fujisawa, Chem. Lett., **1985**, 1679.
- 616. R. Tanikaga, K. Hosoya, and A. Kaji, Synthesis, 1987, 389.
- 617. A. De Camp Schuda, P. H. Mazzocchi, G. Fritz, and T. Morgan, Synthesis, **1986**, 309.
- 618. R. Cloux and M. Schlosser, Helv. Chem. Acta, 67, 1470 (1984).
- 619. M. A. Tius and A. H. Fauq, J. Org. Chem., 48, 4131 (1983).
- 620. H. Nishiyama, H. Yokoyama, S. Narimatsu, and K. Itoh, Tetrahedron Lett., **23**, 1267 (1982).
- 621. K. Kobayashi, Y. Kitano, Y. Takeda, and F. Sato, Tetrahedron, **42**, 2937 (1986).
- 622. T. Nagase, T. Kawashima, and N. Inamoto, Chem. Lett., 1984, 1997.
- 623. L. L. Klein, W. W. McWhorter, Jr., S. S. Ko, K.-P. Pfaff, and Y. Hirata, J. Am. Chem. Soc., **104**, 7362 (1982).
- 624. R. Yamaguchi, H. Kawasaki, and M. Kawanisi, Synth. Commun., **12**, 1027 (1982).
- 625. P. L. Hodges and G. Procter, Tetrahedron Lett., 26, 4111 (1985).
- 626. K. Tamao, E. Nakajo, and Y. Ito, J. Org. Chem., 53, 414 (1988).
- 627. K. Tamao, E. Nakajo, and Y. Ito, J. Org. Chem., 52, 4412 (1987).
- 628. J. R. Luly, C.-N. Hsiao, N. BaMaung, and J. J. Plattner, J. Org. Chem., 53, 6109 (1988).
- 629. D. G. Talekar and A. S. Rao, Synthesis, 1983, 595.
- 630. J. R. McCarthy, C. L. Barney, D. P. Matthews, and T. M. Bargar, Tetrahedron Lett., **28**, 2207 (1987).
- 631. Y. Ishino, I. Nishiguchi, F. Takihira, and T. Hirashima, Tetrahedron Lett., **21**, 1527 (1980).
- 632. S. Araki, M. Ohmura, and Y. Butsugan, Synthesis, **1985**, 963.
- 633. M. Brudermuller and H. Musso, Chem. Ber., 121, 2255 (1988).
- 634. M. I. Johnstone, J. A. Kwass, R. B. Beal, and B. B. Snider, J. Org. Chem., **52**, 5419 (1987).
- 635. Y. Hanzawa, K. Kawagoe, A. Yamada, and Y. Kobayashi, Tetrahedron Lett., **26**, 219 (1985).
- 636. D. Becker, M. Nagler, Z. Harel, and A. Gillon, J. Org. Chem., **48**, 2584 (1983).
- 637. A. Hosomi, H. Iguchi, and H. Sakurai, Chem. Lett., 1982, 223.
- 638. G. Courtois, M. Harama, and L. Miginiac, J. Organomet. Chem., **198**, 1 (1980).

- 639. Ph. Coutrot and C. Grison, Tetrahedron Lett., 29, 2655 (1988).
- 640. T. Fujisawa, T. Sato, T. Kawara, and H. Tago, Bull. Chem. Soc. Jpn., **56**, 345 (1983).
- 641. H. Gopal and C. Tamborski, J. Fluorine Chem., 13, 337 (1979).
- 642. B. M. Trost, J. Cossy, and J. Burks, J. Am. Chem. Soc., **105**, 1052 (1983).
- 643. T. Fujisawa, Y. Kurita, and T. Sato, Chem. Lett., **1983**, 1537.
- 644. L. D. Arnold, J. C. G. Drover, and J. C. Vediras, J. Am. Chem. Soc., **109**, 4649 (1987).
- 645. A. Claesson, A. Quader, and C. Sahlberg, Tetrahedron Lett., **24**, 1297 (1983).
- 646. T. Fujisawa, T. Sato, T. Kawara, and A. Noda, Tetrahedron Lett., **23**, 3193 (1982).
- 647. Y. Gao and K. B. Sharpless, J. Am. Chem. Soc., 110, 7538 (1988).
- 648. T. Fujisawa, T. Sato, T. Kawara, A. Noda, and T. Oleinata, Tetrahedron Lett., **21**, 2553 (1980).
- 649. F. J. Weiberth and S. S. Hall, J. Org. Chem., 52, 3901 (1987).
- 650. T. Fujisawa, K. Umezu, and M. Kawashima, Chem. Lett., 1984, 1795.
- 651. O. Tsuge, S. Kanemase, and Y. Ninomiya, Chem. Lett., **1984**, 1993.
- H. Nagashima, N. Ozaki, M. Washiyama, and K. Itoh, Tetrahedron Lett., 26, 657 (1985).
- 653. T. Fujisawa, A. Noda, T. Kawara, and T. Sato, Chem. Lett., **1981**, 1159.
- 654. M. Asami and T. Mukaiyama, Chem. Lett., **1979**, 569.
- 655. E. Piers and B. W. A. Yeung, J. Org. Chem., 49, 4567 (1984).
- 656. D. N. Jones, N. A. Meanwell, and S. M. Mirza, J. Chem. Soc., Perkin Trans. 1, **1985**, 145.
- 657. X. Huang, C.-C. Chan, and Q.-L. Wu, Tetrahedron Lett., 23, 75 (1982).
- 658. J. Drouin, F. Leyendecker, and J. M. Conia, Tetrahedron, **36**, 1203 (1980).
- 659. W. A. Nugent and F. W. Hobbs, Jr., J. Org. Chem., 48, 5364 (1983).
- 660. Y. Ito, M. Nakatsuka, and T. Saegusa, J. Am. Chem. Soc., **104**, 7609 (1982).
- 661. S. Ayral-Kaloustian, S. Wolff, and W. C. Agosta, J. Am. Chem. Soc., **99**, 5984 (1977).
- 662. K. J. Shea and P. Q. Pham, Tetrahedron Lett., 24, 1003 (1983).
- 663. K. F. Bernady, J. F. Poletto, J. Nocera, P. Mirando, R. E. Schaub, and M. J. Wiess, J. Org. Chem., 45, 4702 (1980).
- 664. B. M. Trost and B. P. Coppola, J. Am. Chem. Soc., **104**, 6879 (1982).
- 665. W. H. Pirkle and P. E. Adams, J. Org. Chem., 45, 4117 (1980).

- 666. G. Casey, S. Lane, and R. J. K. Taylor, J. Chem. Soc., Perkin Trans. 1, 1986, 1397.
- 667. E. Piers and C. K. Lau, Synth. Commun., 7, 495 (1977).
- 668. I. L. Reich and H. J. Reich, J. Org. Chem., 46, 3721 (1981).
- 669. W. K. Bornack, S. S. Bhagwat, J. Ponton, and P. Helquist, J. Am. Chem. Soc., **103**, 4647 (1981).
- 670. T. Makaiyama, K. Saigo, and O. Takazawa, Chem. Lett., 1976, 1033.
- 671. T. A. Blumenkopf and C. H. Heathcock, J. Am. Chem. Soc., **105**, 2354 (1983).
- 672. H. Amri and J. Villieras, Tetrahedron Lett., 28, 5521 (1987).
- 673. S. Danishefsky, M. Kahn, and M. Silvestri, Tetrahedron Lett., **23**, 703 (1982).
- 674. S. Danishefsky, M. Kahn, and M. Silvestri, Tetrahedron Lett., **23**, 1419 (1982).
- 675. W. P. Jackson and S. V. Ley, J. Chem. Soc., Perkin Trans. 1, **1981**, 1516.
- 676. T. K. Morgan, Jr., R. Lis, A. J. Marisca, T. M. Argentieri, M. E. Sullivan, and S. S. Wong, J. Med. Chem., **30**, 2259 (1987).
- 677. K. Hideg, H. O. Hankovsky, H. A. Halasz, and P. Sohar, J. Chem. Soc., Perkin Trans. 1, **1988**, 2905.
- 678. R. T. Taylor and J. G. Galloway, J. Organomet, Chem., 220, 295 (1981).
- 679. C. R. Johnson and T. J. Marren, Tetrahedron Lett., 28, 27 (1987).
- 680. K. Tamao and N. Ishida, Tetrahedron Lett., 25, 4249 (1984).
- 681. J. B. Wiel and F. Rouessac, J. Chem. Soc., Chem. Commun., **1976**, 446.
- 682. H. Buschmann and H.-D. Scharf, Synthesis, 1988, 827.
- 683. J. Schwartz, D. B. Carr, R. T. Hansen, and F. M. Dayrit, J. Org. Chem., 45, 3053 (1980).
- 684. C. H. Heathcock, S.-I. Kiyooka, and T. A. Blumenkopf, J. Org. Chem., 49, 4214 (1984).
- 685. G. Cahiez, J. F. Normant, and D. Bernard, J. Organomet. Chem., **94**, 463 (1975).
- 686. M. T. Rahman, A. K. M. M. Haque, I. Siddique, D. A. N. Chowdhury, S. K. Nahar, and S. L. Saha, J. Organomet. Chem., **188**, 293 (1980).
- 687. Y. Yamamoto, K. Ohdoi, M. Nakatami, and K. Akiba, Chem. Lett., **1984**, 1967.
- 688. D. M. Ryckman and R. V. Stevens, J. Org. Chem., **52**, 4274 (1987).
- 689. L. Colombo, C. Gennari, M. Santandrea, E. Narisano, and C. Scolastico, J. Chem. Soc., Perkin Trans. 1, **1980**, 136.

- 690. C. A. Drake, N. Rabjohn, M. S. Tempesta, and R. B. Taylor, J. Org. Chem., **53**, 4555 (1988).
- 691. G. Colombo, B. Rajashekhar, D. P. Giedroc, and J. J. Villafranca, Biochemistry, **23**, 3590 (1984).
- 692. A. M. Caporusso, C. Polizzi, and L. Lardicci, Tetrahedron Lett., 28, 6073 (1987); *idem, ibid.*, 27, 1067 (1986); *idem*, J. Org. Chem., 52, 3920 (1987).
- 693. T. Kitazume and T. Ohnogi, Synthesis, **1988**, 614.
- 694. R. Amouroux and T. H. Chan, Tetrahedron Lett., 1978, 4453.
- 695. M. Kawashima and T. Fujisawa, Chem. Lett., **1984**, 1851.
- 696. (a) T. Fujigawa, M. Takeuchi, and T. Sato, Chem. Lett., **1982**, 1521; (b)
  T. Kikukawa, M. Imaida, and A. Tai, Chem. Lett., **1982**, 1799.
- 697. (a) T. L. Macdonald, B. A. Narayanan, and D. E. O'Dell, J. Org. Chem.,
  46, 1504 (1981); (b) T. L. Macdonald, S. Mahalingam, and D. E. O'Dell,
  J. Am. Chem. Soc., 103, 6767 (1981).
- 698. H. Kleijn and P. Vermeer, J. Org. Chem., 50, 5696 (1985).
- 699. J. W. Huffman, G. Shanmugasundaram, R. Sawdye, P. C. Ravendranath, and R. C. Desai, J. Org. Chem., **50**, 1460 (1985).
- 700. J. A. Marshall and K. E. Flynn, J. Am. Chem. Soc., **106**, 723 (1984); A. Marshall and V. H. Audia, J. Org. Chem., **50**, 1607 (1985).
- 701. J. A. Marshall, J. C. Peterson, and L. Lebioda, J. Am. Chem. Soc., **106**, 6006 (1984).
- 702. K. Ruitenberg, H. Westmijze, H. Kleijn, and P. Vermeer, J. Organomet. Chem., **277**, 227 (1984).
- 703. M. Montury, B. Psaume, and J. Gore, Tetrahedron Lett., 21, 163 (1980).
- 704. K. Ruitenberg, and P. Vermeer, Tetrahedron Lett., 25, 3019 (1984).
- 705. A. C. Oehlschlager and E. Czyzewska, Tetrahedron Lett., **24**, 5587 (1983).
- 706. A. Doutheau, A. Saba, and J. Gore, Tetrahedron Lett., 23, 2641 (1982).
- 707. A. Doutheau, J. Sarotorelti, and J. Gore, Tetrahedron, 39, 3059 (1983).
- 708. M. Tigchelaar, J. Meijer, H. Kleijn, H. J. T. Bos, and P. Vermeer, J. Organomet. Chem., **221**, 117 (1981).
- 709. J. A. Marshall and S. D. Rothenberger, Tetrahedron Lett., **27**, 1563 (1986).
- 710. M. H. Silveira and W. H. Okamura, J. Org. Chem., **50**, 2390 (1985).
- 711. J. R. Sweet and W. A. G. Graham, J. Organomet. Chem., **241**, 45 (1983).
- 712. L. I. Zakharkim, A. I. Kovredov, M. G. Meiramore, and A. V. Kazantsev, Bull. Acad. Sci. USSR, Div. Chem. Sci., **1977**, 1544.
- 713. (a) H. R. Allcock and P. J. Harris, J. Am. Chem. Soc., 100, 622 (1978);

(b) H. R. Allcock, P. J. Harris, and M. S. Connolly, Inorg. Chem., **20**, 11 (1981).

- 714. G. Cahiez, D. Bernard, J. F. Normant, and J. Villieras, J. Organomet. Chem., **121**, 123 (1976).
- 715. A. Stambouli, R. Amouroux, F. Chastrette, M. Chastrette, G. Mattioda, and A. Blanc, J. Organomet. Chem., **307**, 139 (1986).
- 716. A. Stambouli, F. Chastrette, R. Amourous, M. Chastrette, G. Mattioda, and A. Blanc, Tetrahedron Lett., **27**, 4149 (1986).
- 717. N.-T. Luong-Thi and H. Riviera, Tetrahedron Lett., **1979**, 4657.
- 718. M. Larcheveque and Y. Petit, Tetrahedron Lett., 28, 1993 (1987).
- 719. R. Tanikaga, K. Hosoya, and A. Kaji, J. Chem. Soc., Chem. Commun., **1986**, 836.
- 720. T. Amano, K. Yoshikawa, T. Sano, Y. Ohuchi, M. Shiono, M. Ishigwro, and Y. Fujita, Synth. Commun., **16**, 499 (1988).
- 721. K. Akiba, Y. Iseki, and M. Wada, Tetrahedron Lett., 23, 429 (1982).
- 722. M. Larcheveque and S. Henrot, Tetrahedron Lett., 28, 1781 (1987).
- 723. A. M. Caporusso, C. Polizzi, and L. Lardicci, J. Org. Chem., **52**, 3920 (1987).
- 724. T. W. Bell, L.-Y. Hu, and S. V. Patel, J. Org. Chem., 52, 3847 (1987).
- 725. B. D. Roth and W. H. Roark, Tetrahedron Lett., 29, 1255 (1988).
- 726. F. Scott, B. G. Mafunda, J. F. Normant, and A. Alexakis, Tetrahedron Lett., 24, 5767 (1983).
- 727. J. Klein and R. Levene, Tetrahedron Lett., 1974, 2935.
- 728. Y. Yamamoto, T. Kune, and K. Akiba, Heterocycles, 26, 1495 (1987).
- 729. K. C. Nicolaou, M. E. Duggan, and T. Ladduwahetty, Tetrahedron Lett., **25**, 2069 (1984).
- 730. E. D. Sternberg and K. P. C. Vollhardt, J. Org. Chem., 49, 1574 (1984).
- 731. I. Fleming and N. D. Kindon, J. Chem. Soc., Chem. Commun., **1987**, 1177.
- 732. W. Verboom, D. N. Reinhoudt, R. Visser, and S. Harkema, J. Org. Chem., **49**, 269 (1984).
- 733. S. Okamoto, Y. Kobayashi, H. Kato, K. Hori, T. Takahashi, J. Tsuji, and F. Sato, J. Org. Chem., **53**, 5590 (1988).
- 734. K. Tomioka, T. Suenaga, and K. Koga, Tetrahedron Lett., **27**, 369 (1986).
- 735. J. Enda and I. Kuwajima, J. Am. Chem. Soc., **107**, 5495 (1985).
- 736. G. Stork and E. W. Logusch, Tetrahedron Lett., 1979, 3361.
- 737. B. Fraser-Reid, R. Tsang, D. B. Tulshian, and K. M. Sun, J. Org. Chem., 46, 3764 (1981).

- 738. R. V. Stevens and K. F. Albizati, J. Org. Chem., **50**, 632 (1985).
- 739. B. B. Snider and T. C. Kirk, J. Am. Chem. Soc., 105, 2364 (1983).
- 740. S. V. Ley, N. S. Simpkins, and A. J. Whittle, J. Chem. Soc., Chem. Commun., **1981**, 1001.
- 741. (a) H. Westmijze, H. Kleijn, and P. Vermeer, Synthesis, **1978**, 454; (b) H.
  Westmijze, J. Meijer, H. J. T. Bos, and P. Vermeer, Rec. Trav. Chim.
  Pays-Bas, **95**, 304 (1976).
- 742. F. Nicatra, L. Panza, and G. Russo, J. Chem. Soc., Chem. Commun., **1984**, 5.
- 743. S. H. Bertz, Tetrahedron Lett., **21**, 3151 (1980).
- 744. T. Kobayashi, N. Ishida, and T. Hiraoka, J. Chem. Soc., Chem. Commun., **1980**, 736.
- 745. T. Ishihara, T. Maekawa, Y. Yamasaki, and T. Ando, J. Org. Chem., **52**, 300 (1987).
- 746. R. B. Miller and M. I. Al-Hassan, Tetrahedron Lett., 24, 2055 (1983).
- 747. D. H. Hua and A. Verna, Tetrahedron Lett., **26**, 547 (1985).
- 748. A. Martel, M.-P. Daris, C. Bachand, M. Menard, T. Durst, and B. Belleau, Can. J. Chem., **61**, 1899 (1983).
- 749. M. Larcheveque and Y. Petit, Tetrahedron Lett., 25, 3705 (1984).
- 750. A. I. Meyers, P. D. Edwards, W. F. Rieker, and T. R. Bailey, J. Am. Chem. Soc., **106**, 3270 (1984).
- 751. M. A. Brimble and D. D. Rowan, J. Chem. Soc., Chem. Commun., **1988**, 978.
- 752. T. Kitazume, T. Sato, T. Kobayashi, and J. T. Lin, J. Org. Chem., **51**, 1003 (1986).
- 753. D. L. Comins, J. D. Brown, and N. B. Mantlo, Tetrahedron Lett., **23**, 3979 (1982).
- 754. R. A. Wiley, H.-Y. Choo, and D. McClellan, J. Org. Chem., **48**, 1106 (1983).
- 755. M. Larcheveque, C. Sanner, R. Azerad, and D. Buisson, Tetrahedron, 44, 6407 (1988).
- 756. J. K. Thottathil and J. L. Momiot, Tetrahedron Lett., 27, 151 (1986).
- 757. R. T. Hrubiec and M. B. Smith, J. Org. Chem., **49**, 385 (1984), *idem*, Tetrahedron, **40**, 1457 (1984).
- 758. T. Sato, S. Okura, J. Otura, and H. Nozaki, Tetrahedron Lett., **28**, 6299 (1987).
- 759. D. Solas and J. Wolinsky, J. Org. Chem., 48, 670 (1983).
- 760. R. B. Miller and G. McGarvey, J. Org. Chem., 44, 4623 (1979).
- 761. P. G. Gassman and K. Mlinaric-Majerski, J. Org. Chem., **51**, 2397 (1986).

- 762. M. E. Jung and P. K. Lewis, Synth. Commun., **13**, 213 (1983).
- 763. S. Karady, J. S. Amato, L. M. Weinstock, and M. Sletzinger, Tetrahedron Lett., **1978**, 403.
- 764. D. Michelot and G. Linstrumelle, Tetrahedron Lett., 1976, 275.
- 765. T. Tsuda, T. Yoshida, and T. Saegusa, J. Org. Chem., 53, 607 (1988).
- 766. K. B. Wiberg and S. T. Waddell, Tetrahedron Lett., 29, 289 (1988).
- 767. J. San Fillippo, Jr., and J. Silberman, J. Am. Chem. Soc., **103**, 5588 (1981).
- 768. A. R. Chamberlin and S. H. Bloom, Tetrahedron Lett., 25, 4901 (1984)
- 769. G. H. Posner, G. L. Loomis, and H. S. Sawaya, Tetrahedron Lett., **1975**, 1373.
- 770. W. Carruthers and R. Pooranamoorthy, J. Chem. Soc., Perkin Trans. 1, **1974**, 2405.
- 771. P. M. Warner and S.-L. Lu, J. Am. Chem. Soc., 102, 331 (1980).
- 772. J.-P. Depres and A. E. Greene, J. Org. Chem., 45, 2036 (1980).
- 773. D. O. Spry, Tetrahedron Lett., 21, 1293 (1980).
- 774. (a) W. Bieber and F. Vogtle, Angew. Chem. Int. Ed. Engl., 16, 175 (1977); (b) *idem*, Chem. Ber., 112, 1919 (1979).
- 775. M. Ochiai, K. Sumi, Y. Takaoka, M. Kunishima, Y. Nagao, M. Shiro, and E. Fujita, Tetrahedron, **44**, 4095 (1988).
- 776. J.-E. Dubois, P. Fournier, and C. Lion, Bull. Soc. Chim. Fr., 1976, 1871.
- 777. T. G. Back, S. Collins, M. V. Krishna, and K. W. Law, J. Org. Chem., **52**, 4258 (1987).
- 778. M. Shimizu, R. Ando, and I. Kuwajima, J. Org. Chem., 49, 1230 (1984).
- 779. K. E. Green and L. A. Paquette, J. Org. Chem., 48, 1849 (1983).
- 780. H. E. Zimmerman, M. G. Steinmetz, and C. L. Kreil, J. Am. Chem. Soc., 100, 4146 (1978).
- 781. J. A. Miller, W. Leong, and G. Zweifel, J. Org. Chem., 53, 1839 (1988).
- 782. L. A. Paquette, F. Bellamy, G. J. Wells, M. C. Bahm, and R. Gleiter, J. Am. Chem. Soc., **103**, 7122 (1981).
- 783. X. Lei, C. Doubleday, Jr. and N. J. Turro, Tetrahedron Lett., **27**, 4671 (1986).
- 784. R. H. Mitchell, M. Choudhury, T. W. Dingle, and R. V. Williams, J. Am. Chem. Soc., **106**, 7776 (1984).
- 785. N. Shimizu, F. Shibata, and Y. Tsuno, Chem. Lett., **1985**, 1593.
- 786. E. Schaumann and A. Kirschning, Tetrahedron Lett., 29, 4281 (1988).
- 787. W. R. Roush, M. A. Adam, and S. M. Peseckis, Tetrahedron Lett., **24**, 1377 (1983).
- 788. H. Yamamoto, H. Sasaki, and S. Inokawa, Carbohydr. Res., 100, C44

(1982).

- 789. Y. Kojima and N. Kato, Tetrahedron Lett., 21, 4365 (1980).
- 790. P. F. Hudrlik, D. Peterson, and R. J. Rona, J. Org. Chem., **40**, 2263 (1975).
- 791. T. Inghardt, T. Frejd, and G. Magnusson, J. Org. Chem., **53**, 4542 (1988).
- 792. R. S. Matthews, E. D. Mihelich, L. S. McGowan, and K. Daniels, J. Org. Chem., **48**, 409 (1983).
- 793. Y. L. Merror, A. Dureault, C. Gravier, D. Languin, and J. C. Depezay, Tetrahedron Lett., **26**, 319 (1985).
- 794. M. P. Cooke, Jr. and I. N. Houpis, Tetrahedron Lett., 26, 3643 (1985).
- 795. W. R. Roush, M. A. Adam, A. E. Watts, and D. J. Harris, J. Am. Chem. Soc., **108**, 3422 (1986).
- 796. H. M. Sirat, E. J. Thomas, and J. D. Wallis, J. Chem. Soc., Perkin Trans. 1, **1982**, 2885.
- 797. M. E. Kraft, Tetrahedron Lett., 27, 771 (1986).
- 798. B. Fraser-Reid, L. Magdzinski, B. F. Molino, and D. R. Mootoo, J. Org. Chem., **52**, 4495 (1987).
- 799. E. Behrens and K. B. Sharpless, J. Org. Chem., 50, 5696 (1985).
- 800. J. A. Marshall, M. J. Coghlan, and M. Watanabe, J. Org. Chem., **49**, 747 (1984).
- 801. R. L. Halterman, K. P. C. Vollhardt, M. E. Welker, D. Blaser, and R. Boese, J. Am. Chem. Soc., **109**, 8105 (1987).
- 802. S. C. Welch, A. S. C. P. Rao, J. T. Lyon, and J.-M. Assercq, J. Am. Chem. Soc., **105**, 252 (1983).
- 803. M. Clarembeau, J. L. Bertrand, and A. Krief, Isr. J. Chem., **24**, 125 (1984).
- 804. A. I. Meyers, P. D. Edwards, T. R. Bailey, and G. E. Jagdmann, Jr., J. Org. Chem., **50**, 1019 (1985).
- 805. H. Sakurai, A. Shirahata, Y. Araki, and A. Hosomi, Tetrahedron Lett., **21**, 2325 (1980).
- 806. P. Muller and N. T. M. Phuong, Tetrahedron Lett., **1978**, 4727.
- 807. M. Isobe, Y. Ichikawa, K. Funabashi, S. Mio, and T. Goto, Tetrahedron, 42, 2863 (1986).
- 808. T. Chou, S. C. Hung, and H. H. Tso, J. Org. Chem., 52, 3394 (1987).
- 809. P. Auvray, P. Knochel, and J. F. Normant, Tetrahedron, **44**, 6095 (1988).
- 810. Y.-T. Tao and M.-L. Chen, J. Org. Chem., 53, 69 (1988).
- 811. B. M. Trost and Y. Tanigawa, J. Am. Chem. Soc., **101**, 4413 (1979).

- 812. D. K. Hutchinson and P. L. Fuchs, J. Am. Chem. Soc., 107, 6137 (1985).
- 813. R. Yoneda, S. Harusawa, and T. Kurihara, J. Chem. Soc., Perkin Trans. 1, **1988**, 3163.
- 814. P. G. McDougal, J. G. Rico, and D. Van Derveer, J. Org. Chem., **51**, 4492 (1986).
- 815. T. Ogihara and O. Mitsunobu, Tetrahedron Lett., 24, 3505 (1983).
- 816. F. Naf, R. Decorzant, and S. D. Escher, Tetrahedron Lett., **23**, 5043 (1982).
- 817. T. Ibuka, M. Tanaka, S. Nishii, and Y. Yamamoto, J. Chem. Soc., Chem. Commun., **1987**, 1596.
- 818. Y. Nishimura and S. Umezawa, Tetrahedron Lett., 23, 81 (1982).
- 819. H. J. Reich, J. Org. Chem., 40, 2570 (1975).
- 820. M. M. Islam and A. J. Waring, J. Chem. Res. (S), **1980**, 56; J. Chem. Res. (M), **1980**, 768.
- 821. B. M. Trost and A. C. Lavoire, J. Am. Chem. Soc., 105, 5075 (1983).
- 822. B. M. Trost and T. P. Klun, J. Org. Chem., 45, 4257 (1980).
- 823. J. A. Marshall, J. D. Trometer, B. E. Blough, and T. D. Crute, Tetrahedron Lett., **29**, 913 (1988).
- 824. I. Fleming and A. P. Thomas, J. Chem. Soc., Chem. Commun., **1985**, 411; *ibid.*, **1986**, 1456.
- Y. Tanigawa, Y. Fuse, and S. I. Murahashi, Tetrahedron Lett., 23, 557 (1982).
- 826. G. L. van Mourik and H. J. J. Pabon, Tetrahedron Lett., 1978, 2705.
- 827. Y. Masaki, K. Sakuma, and K. Kaji, J. Chem. Soc., Chem. Commun., **1980**, 434.
- 828. J. P. Marino and H. Abe, Synthesis, 1980, 872.
- 829. N. Ono, I. Hamamoto, and A. Kaji, J. Chem. Soc., Chem. Commun., 1984, 274.
- 830. J.-E. Backvall and S. K. Juntenen, J. Am. Chem. Soc., 109, 6396 (1987).
- 831. S. A. Hardinger and P. L. Fuchs, J. Org. Chem., **52**, 2739 (1987).
- 832. T. Ibuka, G.-N. Chu, and F. Yoneda, Tetrahedron Lett., 25, 3247 (1984).
- 833. A. Bernardi, W. Carbi, G. Poli, and L. Prati, J. Chem. Res. (S), 1986, 52.
- 834. T. Mukaiyama, Y. Hayashi, and Y. Hashimoto, Chem. Lett., 1986, 1627.
- 835. C. Fan and B. Cazes, Tetrahedron Lett., 29, 1701 (1988).
- 836. A. B. Smith, III, P. A. Lavenberg, P. J. Jerris, R. M. Scarborough, Jr., and
   P. M. Wovkulich, J. Am. Chem. Soc., **103**, 1501 (1981).
- 837. H. J. Reich, E. K. Eisenhart, W. L. Whipple, and M. J. Kelly, J. Am. Chem. Soc., **110**, 6432 (1988).
- 838. Y. Tanigawa, H. Kanamaru, A. Sonoda, and S. I. Murahashi, J. Am.

Chem. Soc., 99, 2361 (1977).

- 839. J. A. Marshall and J. D. Trometer, Tetrahedron Lett., 28, 4985 (1987).
- 840. W. J. Klaver, M. J. Moolenaar, H. Hiemstra, and W. N. Speckamp, Tetrahedron, 44, 3805 (1988).
- 841. H. Hiemstra, W. J. Klaver, M. J. Moolenaar, and W. N. Speckamp, Tetrahedron Lett., **27**, 1425 (1986).
- 842. M. Apparu and J. K. Crandall, J. Org. Chem., 49, 2125 (1984).
- 843. P. Mangeney, A. Alexakis, and J. F. Normant, Tetrahedron, **40**, 1803 (1984).
- 844. J. Mattay, M. Conrads, and J. Runsink, Synthesis, 1988, 595.
- 845. E. Keinan and E. Bosch, J. Org. Chem., 51, 4406 (1986).
- 846. A. Haces, E. M. G. A. van Krutchen, and W. H. Okamura, Tetrahedron Lett., **23**, 2707 (1982).
- 847. H. Kunzor and S. Berger, J. Org. Chem., **50**, 3222 (1985).
- 848. F. Gruger and G. Szeimies, Tetrahedron Lett., 27, 1563 (1986).
- 849. P. J. Garratt and A. Tsotinis, Tetrahedron Lett., 29, 1833 (1988).
- 850. S. G. Davies and G. L. Gravatt, J. Chem. Soc., Chem. Commun., **1988**, 780.
- 851. P. T. Meinke, G. A. Krafft, and A. Guran, J. Org. Chem., **53**, 3632 (1988).
- 852. C. G. Whitely and I. Zwane, J. Org. Chem., 50, 1969 (1985).
- 853. M. Green, S. Greenfield, and M. Kersting, J. Chem. Soc., Chem. Commun., **1985**, 18.
- 854. G. Curtois, A. Al-Arnaout, and L. Miginac, Tetrahedron Lett., **26**, 1027 (1985).
- 855. B. M. Trost, K. Hiroi, and L. N. Jungheim, J. Org. Chem., 45, 1839 (1980).
- 856. J. Schafer, K. Polborn, and G. Szeimies, Chem. Ber., 121, 2263 (1988).
- 857. A. J. Pearson, Aust. J. Chem., 30, 345 (1977).
- 858. A. J. Pearson, Aust. J. Chem., 29, 1101 (1976).
- 859. K.-T. Kang, H.-Y. Song, and H.-C. Seo, Chem. Lett., 1985, 617.
- P. D. Pansegrau, W. F. Rieker, and A. I. Meyers, J. Am. Chem. Soc., 110, 7178 (1988).
- 861. A. J. Pearson, S. L. Kole, and B. Chen, J. Am. Chem. Soc., **105**, 4483 (1983); A. J. Pearson, S. L. Kole, and T. Ray, ibid, **106**, 6060 (1984).
- 862. R. G. Beevor, M. Green, A. G. Orpen, and I. D. Williams, J. Chem. Soc., Chem. Commun., **1983**, 673.
- 863. T. N. Danks, D. Rakshit, and S. E. Thomas, J. Chem. Soc., Perkin Trans. 1, **1988**, 2091.

- 864. K.-Y. Akiba, K. Takee, Y. Shimizu, and K. Ohkata, J. Am. Chem. Soc., 108, 6320 (1986).
- 865. P. Coutrot and A. Ghribi, Synthesis, 1986, 661.
- 866. D. Levin and S. Warren, Tetrahedron Lett., 26, 505 (1985).
- 867. S. Hashimoto, S. Yamada, and K. Koga, Chem. Pharm. Bull., **27**, 771 (1979).
- 868. A. J. Guildford, M. A. Tometzki, and R. W. Turner, Synthesis, 1983, 987.
- 869. M. F. Salomon and R. F. Salomon, J. Am. Chem. Soc., **101**, 4290 (1979).
- 870. L. A. Paquette, J. M. Gardlik, K. J. McCullough, and Y. Hanzawa, J. Am. Chem. Soc., **105**, 7644 (1983).
- 871. H. Jendralla, K. Jelich, G. DeLucca, and L. A. Paquette, J. Am. Chem. Soc., **108**, 3731 (1986).
- 872. M. S. Newman and N. S. Hussain, J. Org. Chem., 47, 2837 (1982).
- 873. A. Alexakis, G. Cahiez, and J. F. Normant, Tetrahedron, 36, 1961 (1980).
- 874. H. Westmijze, K. Ruitenberg, J. Meijer, and P. Vermeer, Tetrahedron Lett., 23, 2797 (1982).
- 875. G. D. Chirico, V. Fiandanese, G. Marchese, F. Naso, and O. Sciacovelli, J. Chem. Soc., Chem. Commun., **1981**, 523.
- 876. A. Alexakis and J. F. Normant, Synthesis, 1985, 72.
- 877. I. Fleming and T. W. Newton, J. Chem. Soc., Perkin Trans. 1, 1984, 119.
- 878. A. Alexakis, A. Commercon, J. Villieras, and J. F. Normant, Tetrahedron Lett., **1976**, 2316.
- 879. H. M. Chen and J. P. Oliver, J. Organomet. Chem., **316**, 255 (1986).
- 880. H.-F. Chow and I. Fleming, J. Chem. Soc., Perkin Trans. 1, 1984, 1815.
- 881. H. Sugihara, R. Tanikaga, K. Tanaka, and A. Kaji, Bull. Chem. Soc. Jpn., 51, 655 (1978).
- 882. G. Just and B. O'Connor, Tetrahedron Lett., 26, 1799 (1985).
- 883. D. H. Hua, S. Venkataraman, R. A. Ostrander, G.-Z. Sinai, P. J. McCann, M. J. Coulter, and M. R. Xu, J. Org. Chem., **53**, 507 (1988).
- 884. J. J. Eisch, M. Behrooz, and S. K. Dua, J. Organomet. Chem., 285, 121 (1985).
- 885. J. Berlan and K. Koosha, J. Organomet. Chem., 153, 99 (1978).
- 886. J. Berlan and K. Koosha, J. Organomet. Chem., 153, 107 (1978).
- 887. J. Berlan, J. P. Baltioni, and K. Koosha, J. Organomet. Chem., **152**, 359 (1978).
- 888. (a) J. P. Marino and L. J. Browne, Tetrahedron Lett., **1976**, 3241. (b) J.
   P. Marino and L. J. Browne, Tetrahedron Lett., **1976**, 3245.

- 889. G. Wulff, H. Bohnke, and H. T. Klinken, Liebigs Ann. Chem., 1988, 501.
- 890. C. Chuit, J. P. Foulon, and J. F. Normant, Tetrahedron, 36, 2305 (1980).
- 891. W. Bernhard, I. Fleming, and D. Waterson, J. Chem. Soc., Chem. Commun., **1984**, 28.
- 892. R. Matsuoka, Y. Horiguchi, and I. Kuwajima, Tetrahedron Lett., **28**, 1299 (1987).
- Berlan, J. P. Baltioni, and K. Koosha, Bull. Soc. Chim. Fr. II, **1979**, 183.
- 894. R. J. P. Corriu, J. J. E. Moreau, and C. Vernhet, Tetrahedron Lett., **28**, 2963 (1987).
- 895. K. Iwai, H. Kosugi, H. Uda, and M. Kawai, Bull. Chem. Soc. Jpn., **50**, 242 (1977).
- 896. J.-M. Fang and H.-T. Chang, J. Chem. Soc., Perkin Trans. 1, **1988**, 1945.
- 897. E. Piers and H. E. Morton, J. Org. Chem., 45, 4263 (1980).
- 898. E. Piers, J. M. Chong, and H. E. Morton, Tetrahedron Lett., **22**, 4905 (1981).
- 899. H. Ogoshi, H. Mizushima, H. Tai, and Y. Aoyama, J. Org. Chem., **51**, 2351 (1986).
- 900. R. S. Macomber, I. Constantinides, and G. Garrett, J. Org. Chem., **50**, 4711 (1985).
- 901. A. B. Smith, N. K. Dunlap, and G. A. Sulikowski, Tetrahedron Lett., 29, 439 (1988); A. B. Smith and P. K. Trumper, *ibid.*, 29, 443 (1988).
- 902. H. E. Zimmerman, C. E. Canfield, and R. K. King, J. Am. Chem. Soc., 107, 7732 (1985).
- 903. D. Liotta, M. Saindane, C. Barnum, and G. Zima, Tetrahedron, **41**, 4881 (1985).
- 904. M. Solomon, W. Hoekstra, G. Zima, and D. Liotta, J. Org. Chem., **53**, 5058 (1988).
- 905. H. Mattes, K. Hamda, and C. Benezra, J. Med. Chem., **30**, 1948 (1987).
- 906. S. Takano, Y. Sekiguchi, and K. Ogasawara, J. Chem. Soc., Chem. Commun., **1988**, 449.
- 907. A. S. Kende and L. N. Jungheim, Tetrahedron Lett., 21, 3849 (1980).
- 908. C. P. Casey, C. R. Jones, and H. Tukada, J. Org. Chem., **46**, 2089 (1981).
- 909. I. Fleming and D. A. Perry, Tetrahedron, **37**, 4027 (1981).
- 910. J. A. Prieto and G. L. Larson, Synth. Commun., **10**, 675 (1980); *idem*, Tetrahedron, **39**, 855 (1983).
- 911. E. Piers and V. Karunaratne, J. Chem. Soc., Chem. Commun., **1983**, 935.

- 912. M. Gill, H. P. Bainton, and R. W. Rickards, Tetrahedron Lett., **22**, 1437 (1981).
- 913. A. B. Smith, B. A. Wexler, and J. S. Slade, Tetrahedron Lett., **21**, 3237 (1980).
- 914. G. H. Posner and C. M. Lentz, J. Am. Chem. Soc., 101, 934 (1979).
- 915. E. Piers, I. Nagakura, and J. E. Shaw, J. Org. Chem., 43, 3431 (1978).
- 916. E. Piers and I. Nagakura, Tetrahedron Lett., 1976, 3237.
- 917. F. Barbot, E. Paraiso, and Ph. Miginiac, Tetrahedron Lett., **25**, 4369 (1984).
- 918. C. J. Kowalski, A. E. Weber, and K. W. Fields, J. Org. Chem., **47**, 5088 (1982).
- 919. R. J. Batten, J. D. Coyle, and R. J. K. Taylor, Synthesis, **1980**, 910.
- 920. H. J. Monteiro, J. Org. Chem., 42, 2324 (1977).
- 921. D. K. Hutchinson, S. A. Hardinger, and P. L. Fuchs, Tetrahedron Lett., **27**, 1425 (1986).
- 922. H. Redlich and H. J. Neumann, Chem. Ber., **114**, 2029 (1981).
- 923. M. B. Yunker, D. E. Plaumann, and B. Fraser-Reid, Can. J. Chem., **55**, 4002 (1977).
- 924. J. P. Vigneron, R. Meric, and M. Dhaenens, Tetrahedron Lett., **21**, 2057 (1980).
- 925. T. A. Bryson, D. A. Smith, and S. A. Krueger, Tetrahedron Lett., **1977**, 525.
- 926. A. Bernardi, M. G. Beretta, L. Colombo, C. Gennari, G. Poli, and C. Scolastico, J. Org. Chem., 50, 4442 (1985).
- 927. L. A. Paquette and R. F. Doehner, Jr., J. Org. Chem., 45, 5105 (1980).
- 928. D. Mackay, E. G. Neeland, and N. J. Taylor, J. Org. Chem., **51**, 2351 (1986).
- 929. See reference 922.
- 930. U. E. Udodong and B. Fraser-Reid, J. Org. Chem., 53, 2131 (1988).
- 931. S. E. Denmark, R. P. Hammer, E. J. Weber, and K. L. Habermas, J. Org. Chem., 52, 165 (1987).
- 932. T. K. Jones and S. E. Denmark, J. Org. Chem., 50, 4037 (1985).
- 933. R. J. P. Corriu, C. Guerin, and J. M'Boula, Tetrahedron Lett., **22**, 2985 (1981).
- 934. M. Murakami, T. Matsura, and Y. Ito, Tetrahedron Lett., 21, 163 (1980).
- 935. F. Arevalo, L. Castedo, B. R. Fernandez, A. Mourino, and L. Sarandeses, Chem. Lett., **1988**, 745.
- 936. E. Piers and I. Nagakura, J. Org. Chem., 40, 2694 (1975).
- 937. C. J. Kowalski and K. W. Fields, J. Org. Chem., 46, 197 (1981).

- 938. M. Koreeda and J. I. Luengo, J. Am. Chem. Soc., 107, 5572 (1985).
- 939. P. Callant, L. D'Haenens, and M. Vandewalle, Synth. Commun., **14**, 155 (1984).
- 940. K. Yamamoto, M. Iijima, Y. Ogimura, and J. Tsuji, Tetrahedron Lett., **25**, 2813 (1984).
- 941. R. K. Boeckman, Tetrahedron, **39**, 925 (1983).
- 942. E. Piers, C. K. Lau, and I. Nagakura, Tetrahedron Lett., 1976, 3233.
- 943. K. E. Harding and C. Tseng, J. Org. Chem., 43, 3974 (1978).
- 944. J. P. Marino and L. J. Browne, J. Org. Chem., 41, 3629 (1976).
- 945. N. L. Holy and Y. F. Wang, J. Am. Chem. Soc., **99**, 944 (1977).
- 946. M. Samson, H. DeWilde, and M. Vandewalle, Bull. Soc. Chim. Belg., 86, 329 (1977).
- 947. K. K. Heng and R. A. J. Smith, Tetrahedron, 35, 425 (1979).
- 948. S. Bernasconi, P. Gariboldi, G. Jommi, and M. Sisti, Tetrahedron Lett., **21**, 2337 (1980).
- 949. E. J. Corey and T. M. Eckrich, Tetrahedron Lett., 24, 3165 (1983).
- 950. T. E. Goodwin, C. M. Crowder, R. B. White, J. S. Swanson, F. E. Evans, and W. L. Meyer, J. Org. Chem., 48, 376 (1983).
- 951. S. Hanessian, P. C. Tyler, and Y. Chapleur, Tetrahedron Lett., **22**, 4583 (1981).
- 952. H. H. Baer and Z. S. Hanna, Carbohydr. Res., 85, 136 (1980).
- 953. T. Takahashi, K. Hort, and J. Tsuji, Tetrahedron Lett., 22, 119 (1981).
- 954. M. Kato, A. Ouchi, and A. Yoshikoshi, Chem. Lett., **1983**, 1511.
- 955. B. Gustaffson, M. Nilsson, and C. Ullenius, Acta Chem. Scand., Ser. B., 31, 667 (1977).
- 956. F. Huet, A. Lechevallier, and J. M. Conia, Tetrahedron Lett., **22**, 3585 (1981).
- 957. M. Nagarajan and H. Schechter, J. Org. Chem., 49, 62 (1984).
- 958. J. C. Gilbert, T. Luo, and U. Patel, J. Org. Chem., 46, 197 (1981).
- 959. R. C. Larock, K. Oertle, and G. F. Potter, J. Am. Chem. Soc., **102**, 1974 (1980).
- 960. W. D. Wuff, G. A. Peterson, W. E. Bauta, K.-S. Chan, K. L. Faron, S. R. Gilbertson, R. W. Kaesler, D. C. Yang, and C. K. Murray, J. Org. Chem., 51, 277 (1986).
- 961. E. Piers, I. Nagakura, and H. E. Morton, J. Org. Chem., 43, 3630 (1978).
- 962. E. Piers and H. E. Morton, J. Chem. Soc., Chem. Commun., 1978, 1033.
- 963. E. Piers, H. E. Morton, and J. M. Chong, Can. J. Chem., 65, 78 (1987).
- 964. R. Urech, J. Chem. Soc., Chem. Commun., 1984, 989.
- 965. C. Chuit, R. Sauvetre, D. Masure, and J. F. Normant, Tetrahedron, 35,

2645 (1979).

- 966. F. E. Ziegler and J. J. Piwinski, J. Am. Chem. Soc., **104**, 7181 (1982).
- 967. E. Wenkert, P. M. Wookulich, R. Pelliciari, and P. Ceccherelli, J. Org. Chem., **42**, 1105 (1977).
- 968. S. Bernasconi, G. Jommi, S. Montanari, and M. Sisti, Gazz. Chim. Ital., 117, 125 (1987).
- 969. D. T. Belmont and L. A. Paquette, J. Org. Chem., 50, 4102 (1985).
- 970. J. L. Cooke, H. J. Williams, and S. Natarajan, J. Org. Chem., **42**, 2380 (1977).
- 971. D. I. Schuster, L. Wang, and J. M. van der Veen, J. Am. Chem. Soc., 107, 7045 (1985).
- 972. S. Hanessian, P. J. Murray, and S. P. Sahoo, Tetrahedron Lett., 26, 5627 (1985).
- 973. A. Itoh, S. Ozawa, K. Oshima, and H. Nozaki, Bull. Chem. Soc. Jpn., **54**, 274 (1981).
- 974. C. H. Heathcock, T. C. Germroth, and S. L. Graham, J. Org. Chem., **44**, 4481 (1979).
- 975. R. D. Clark, Synth. Commun., **9**, 325 (1979).
- 976. E. Piers and H. L. A. Tse, Tetrahedron Lett., 25, 3155 (1984).
- 977. W. R. Roush and B. M. Lessur, Tetrahedron Lett., 24, 2231 (1983).
- 978. F. E. Ziegler and P. J. Gilligan, J. Org. Chem., 46, 3874 (1981).
- 979. G. H. Posner, J. P. Mallamo, and K. Miura, J. Am. Chem. Soc., **103**, 2886 (1981).
- 980. J. P. Konopelski, P. Sundararaman, G. Barth, and C. Djerassi, J. Am. Chem. Soc., **102**, 2737 (1980).
- 981. G. Majetich, A. Casares, D. Chapman, and M. Behoke, J. Org. Chem., 51, 1745 (1986).
- 982. See reference 979.
- 983. H. J. Reich, K. E. Yelm, I. L. Reich, J. Org. Chem., 49, 3438 (1984).
- 984. D. J. Ager and M. B. East, J. Org. Chem., 51, 3983 (1986).
- 985. S. T. Saengchantara and T. W. Wallace, J. Chem. Soc., Chem. Commun., **1986**, 1592.
- 986. D. Caine and T. L. Smith, Synth. Commun., **10**, 751 (1980).
- 987. H. Malberg and M. Nilsson, Tetrahedron, 38, 1509 (1982).
- 988. S. F. Martin and D. R. Moore, Tetrahedron Lett., **1976**, 4459.
- 989. See reference 986.
- 990. F. L. Harris and L. Weiler, Tetrahedron Lett., 28, 2941 (1987).
- 991. R. Ramage, C. A. Barron, S. Bielecki, and D. W. Thomas, Tetrahedron Lett., **28**, 4105 (1987).

- 992. R. A. Roberts, V. Schull, and L. A. Paquette, J. Org. Chem., **48**, 2076 (1983).
- 993. T. G. Back, S. Collins, and K. W. Law, Tetrahedron Lett., 25, 1689 (1984).
- 994. T. H. Chan and C. V. C. Prasad, J. Org. Chem., 52, 110 (1987).
- 995. J. B. Hendrickson and J. S. Farina, Org. Chem., 45, 3361 (1980).
- 996. W. Oppolzer, M. Kurth, D. Reichlin, C. Chapuis, M. Mohnhaupt, and F. Moffatt, Helv. Chim. Acta, 64, 2802 (1981).
- 997. O. H. Johansen and K. Undheim, Acta Chem. Scand., Ser. B, **33**, 460 (1979).
- 998. J. W. Wallace, Tetrahedron Lett., 25, 4299 (1984).
- 999. M. Saha, B. Bagby, and K. M. Nicholas, Tetrahedron Lett., **27**, 915 (1986).
- 1000. A. Dondoni, G. Fantin, M. Fogagnolo, A. Medici, and P. Pedrini, Tetrahedron, **44**, 2021 (1988).
- 1001. N. E. Schore and M. J. Knudsen, J. Org. Chem., 52, 569 (1987).
- 1002. H. O. House, R. F. Sieloff, T. V. Lee, and M. B. DeTar, J. Org. Chem., **45**, 1800 (1980).
- 1003. P. T. Lansbury and T. E. Nickson, Tetrahedron Lett., 23, 2627 (1982).
- 1004. C. H. Heathcock, E. G. Delmar, and S. L. Graham, J. Am. Chem. Soc., **104**, 1907 (1982).
- 1005. Y. Yamamoto, S. Nishii, and T. Ibuka, J. Chem. Soc., Chem. Commun., 1987, 1572.
- 1006. D. Kruger, A. E. Sopehik, and C. A. Kingsbury, J. Org. Chem., **49**, 778 (1984).
- 1007. W. B. Smith, A. P. Marchand, S. C. Suri, and P.-W. Jin, J. Org. Chem., 51, 3052 (1986).
- 1008. M. Ando, S. Sayama, K. Takase, Chem. Lett., 1981, 377.
- 1009. R. D. Clark and C. H. Heathcock, J. Org. Chem., 41, 636 (1976).
- 1010. D. Seebach and B. Herradon, Tetrahedron Lett., 28, 3791 (1987).
- 1011. H. O. House and T. V. Lee, J. Org. Chem., 43, 4369 (1978).
- 1012. P. G. Baraldi, A. Barco, S. Benetti, G. P. Pollini, E. Polo, and D. Simoni, J. Org. Chem., **50**, 23 (1985).
- 1013. D. Caine, S. L. Granham, and T. T. Vora, J. Org. Chem., **45**, 3798 (1980).
- 1014. N. E. Schore, Synth. Commun., 9, 41 (1979).
- 1015. T. Kametani, M. Nishimura, K. Higurashi, Y. Suzuki, M. Tsubuki, and T. Honda, J. Org. Chem., **52**, 5233 (1987).
- 1016. A. Pelter, R. S. Ward, D. Ohlendorf, and D. H. J. Ashdown, Tetrahedron,

**35**, 531 (1979).

- 1017. G. Schulz, P. Gruber, and W. Steglich, Chem. Ber., 112, 3221 (1979).
- 1018. G. Maier, S. Pfriem, U. Schafer, K. D. Malsch, and R. Matusch, Chem. Ber., **114**, 3965 (1981).
- 1019. B. M. Trost and M. Shimizu, J. Am. Chem. Soc., 104, 4299 (1982).
- 1020. K. Ruitenberg and P. Vermeer, J. Organomet. Chem., 256, 175 (1983).
- 1021. G. H. Posner, W. Harrison, and D. G. Weltlaufer, J. Org. Chem., **50**, 5041 (1985).
- 1022. G. van Koten, C. A. Schaap, and J. G. Noltes, J. Organomet. Chem., **99**, 157 (1975).
- 1023. M. K. Poindexter and T. J. Katz, Tetrahedron Lett., 29, 1513 (1988).
- 1024. K. Ruitenberg, J. Meijer, R. J. Bullee, and P. Vermeer, J. Organomet. Chem., **217**, 267 (1981).
- 1025. P. J. Beswick and D. A. Widdowson, Synthesis, **1985**, 492.
- 1026. P. Savignac, A. Breque, C. Charrier, and F. Mathey, Synthesis, **1979**, 832.
- 1027. H. Onoue, M. Narisada, S. Uyeo, H. Matsumara, K. Okada, T. Yano, and W. Nagata, Tetrahedron Lett., **1979**, 3867.
- 1028. N. De Kimpe, B. DeCorte, R. Verhe, L. DeBuyck, and N. Schamp, Tetrahedron Lett., **25**, 1095 (1984).
- 1029. G. A. Kraus and M. J. Taschner, J. Am. Chem. Soc., 102, 331 (1980).
- 1030. D. J. Burton and S. W. Hansen, J. Am. Chem. Soc., 108, 4229 (1986).
- 1031. (a) S. K. Moiseev, N. N. Sedova, and V. A. Sazonova, Dokl. Akad. Nauk SSSR, 267, 1374 (1982); CA, 98, 160894w; Proc. Acad. Sci. USSR, Eng. Trans., 267, 444 (1982); (b) A. N. Nesmeyanov, N. N. Sedova, V. A. Suzonova, and S. K. Moiseev, J. Organomet. Chem., 185, C6 (1980).
- 1032. P. J. Beswick, S. J. Leach, N. F. Masters, and D. A. Widdowson, J. Chem. Soc., Chem. Commun., **1984**, 46.
- 1033. A. Claesson and C. Sahlberg, Tetrahedron, **38**, 363 (1982).
- 1034. P. L. Fuchs, J. Org. Chem., 41, 2935 (1976).
- 1035. J. Kang, W. Cho, and W. K. Lee, J. Org. Chem., 49, 1838 (1984).
- 1036. J. M. Gerdes and W. H. Okamura, J. Org. Chem., 48, 4030 (1983); K. Ruitenberg, H. Keijn, J. Meijer, E. A. Oostveen, and P. Vermeer, J. Organomet. Chem., 224, 399 (1982); T. Jeffrey-Loung and G. Linstrumelle, Synthesis, 1982, 738.
- 1037. J. G. Smith, S. E. Drozda, S. P. Petraglia, N. R. Quinn, E. M. Rice, B. S. Taylor, and M. Viswanathan, J. Org. Chem., **49**, 4112 (1984).
- 1038. K. Ruitenberg, H. Westmijze, J. Meijer, C. J. Elsevier, and P. Vermeer, J. Organomet. Chem., **241**, 417 (1983).
- 1039. T. Takeda, S. Ogawa, N. Ohta, and T. Fujiwara, Chem. Lett., **1987**,

1967.

- 1040. R. B. Nachbar, D. W. Hounshell, V. A. Naman, O. Wennerstrom, A. Guenzi, and K. Mislow, J. Org. Chem., **48**, 1227 (1983).
- 1041. H. M. Walborsky, R. B. Banks, M. L. A. Banks, and M. Duraisamy, Organometallics, **1**, 667 (1982).
- 1042. L. S. Hegedus, R. R. Odle, P. M. Winton, and P. R. Weider, J. Org. Chem., **47**, 2607 (1982).
- 1043. T. Fujisawa, Y. Kurita, M. Kawashima, and T. Sato, Chem. Lett., **1982**, 1641.
- 1044. W. De Graaf, A. Smits, J. Boersma, G. van Koten, and W. P. M. Hoekstra, Tetrahedron, **44**, 6699 (1988).
- 1045. J. C. Saddler and P. L. Fuchs, J. Am. Chem. Soc., **103**, 2112 (1981).
- 1046. H. Malmberg and M. Nilsson, Tetrahedron, **42**, 3986 (1986).
- 1047. G. Stork, C. S. Shiner, C. W. Cheng, and R. L. Polt, J. Am. Chem. Soc., **108**, 304 (1986).
- 1048. J. Kallmerten, Tetrahedron Lett., **25**, 2843 (1984).
- 1049. Y. Yamamoto, H. Yatagai, and K. Maruyama, J. Org. Chem., **44**, 1744 (1979).
- 1050. R. J. Batten, J. D. Coyle, R. J. K. Taylor, and S. Vassiliou, J. Chem. Soc., Perkin Trans. 1, **1982**, 1177.
- 1051. K. Takahashi, M. Shiro, and M. Kishi, J. Org. Chem., 53, 3098 (1988).
- 1052. R. Tanikaga, H. Yamashita, and A. Kaji, Synthesis, **1986**, 416.
- 1053. R. Tanikaga, H. Yamashita, and A. Kaji, Synthesis, 1986, 416.
- 1054. Y. Ito, H. Imai, T. Matsuura, and T. Saegusa, Tetrahedron Lett., **25**, 3091 (1984).
- 1055. S. H. Ahn, D. Kim, M. W. Chun, and W. K. Chung, Tetrahedron Lett., **27**, 943 (1986).
- 1056. T. Ibuka, H. Minakata, Y. Mitsui, K. Kinoshita, Y. Kawami, and N. Kimura, Tetrahedron Lett., **21**, 407 (1980).
- 1057. T. Ileuka, H. Minakata, Y. Mitsui, K. Kinoshita, and Y. Kawami, J. Chem. Soc., Chem. Commun., **1980**, 1193.
- 1058. W. Oppolzer, R. Moretti, T. Godel, A. Meunier, and H. Loher, Tetrahedron Lett., **24**, 4971 (1983).
- 1059. W. C. Still and I. Galynker, Tetrahedron, **37**, 3981 (1981).
- 1060. M. Suzuki, T. Kawagishi, and R. Noyori, Tetrahedron Lett., **22**, 1809 (1981).
- 1061. S. J. Hecker and C. H. Heathcock, J. Org. Chem., **50**, 5159 (1985).
- 1062. C. Lion, J. E. Dubios, and I. Saumtally, C.R. Acad. Sci., Ser. II, **298**, 783 (1984).
- 1063. M. J. O'Donnell and J.-B. Falmagne, Tetrahedron Lett., 26, 699 (1985).
- 1064. T. Bretschneider, W. Miltz, P. Munster, and W. Steglich, Tetrahedron, 44, 5403 (1988).
- 1065. D. F. Taber, B. S. Dunn, J. F. Mack, and S. A. Saleh, J. Org. Chem., **50**, 1987 (1985).
- 1066. J. D. Buynak, H. B. Borate, C. Husting, T. Hurd, J. Vallabh, J. Mathew, J. Lambert, and U. Siriwardane, Tetrahedron Lett., **29**, 5053 (1988).
- 1067. G. Solladie, C. Hamdouchi, and M. Vincente, Tetrahedron Lett., **29**, 5929 (1988).
- 1068. D. L. Reger, K. A. Belmore, E. Hintz, N. G. Charles, E. A. H. Griffith, and E. L. Amma, Organometallics, 2, 101 (1983); D. L. Reger, Acc. Chem. Res., 21, 229 (1988).
- 1069. M. A. Findeis and G. M. Whitesides, J. Org. Chem., **52**, 2838 (1987).
- 1070. I. Fleming and M. Taddei, Synthesis, 1985, 899.
- 1071. J. D. White, P. Theramongkol, C. Kuroda, and J. R. Engebrecht, J. Org. Chem., **53**, 5909 (1988).
- 1072. P. F. Corey, Tetrahedron Lett., 28, 2801 (1987).
- 1073. J. A. Marshall, J. Grote, and J. E. Audia, J. Am. Chem. Soc., **109**, 1186 (1987).
- 1074. J. S. Ng, J. R. Behling, A. L. Campbell, D. Nguyen, and B. Lipshutz, Tetrahedron Lett., **29**, 3045 (1988).
- 1075. B. H. Lipshutz, D. Parker, J. A. Kozlowski, and R. D. Miller, J. Org. Chem., **48**, 3334 (1983).
- 1076. M. J. Kurth and M. A. Abrio, Tetrahedron Lett., 28, 5631 (1987).
- 1077. J. Yoshimura, N. Kawauchi, T. Yasumori, K. Sato, and H. Haslimoto, Carbohydr. Res., **133**, 255 (1984).
- 1078. B. Laycock, W. Kitching, and G. Wickham, Tetrahedron Lett., **24**, 5785 (1983).
- 1079. R. Baker, C. J. Swain, and J. C. Head, J. Chem. Soc., Chem. Commun., **1985**, 309.
- 1080. A. Dureault, I. Tranchepain, C. Greck, and J. C. Depezay, Tetrahedron Lett., **28**, 3341 (1987).
- 1081. B. H. Lipshutz and J. C. Barton, J. Org. Chem., 53, 4495 (1988).
- 1082. J. Mulzer, L. A. Ansorge, H. Kirstein, T. Matsuoka, and W. Munch, J. Org. Chem., **52**, 3784 (1987).
- 1083. T. Harayama, H. Fukushi, K. Ogawa, and F. Yoneda, Chem. Pharm. Bull., **33**, 3564 (1985).
- 1084. B. H. Lipshutz, B. Huff, and W. Vaccaro, Tetrahedron Lett., **27**, 4241 (1986).
- 1085. J. E. McMurray and S. Mohanraj, Tetrahedron Lett., 24, 2723 (1983).

- 1086. J. M. Chong, D. R. Cyr, and E. K. Mar, Tetrahedron Lett., **28**, 5009 (1987).
- 1087. S. R. Gilbertson, C. A. Challener, M. E. Bos, and W. D. Wulff, Tetrahedron Lett., **29**, 4795 (1988).
- 1088. D. L. Boring and R. D. Sindelar, J. Org. Chem., 53, 3617 (1988).
- 1089. A. Capperucci, A. Degl'Innocenti, C. Faggi, A. Ricci, P. Dembech, and G. Seconi, J. Org. Chem., 53, 3612 (1988).
- 1090. G. Y. Shen, R. Tapia, and W. H. Okamura, J. Am. Chem. Soc., **109**, 7499 (1987).
- 1091. D. L. Reger, E. Mintz, and L. Lebioda, J. Am. Chem. Soc., **108**, 1940 (1986).
- 1092. W. Reischl and W. H. Okamura, J. Am. Chem. Soc., **104**, 6879 (1982).
- 1093. I. Fleming and N. K. Terrett, J. Organomet. Chem., 264, 99 (1984).
- 1094. H.-F. Chow and I. Fleming, Tetrahedron Lett., 26, 397 (1985).
- 1095. G. Y. Shen, A. R. de Lera, T. C. Norman, A. Haces, and W. H. Okamura, Tetrahedron Lett., **28**, 2917 (1987).
- 1096. G. Teutsch, Tetrahedron Lett., 23, 4697 (1982).
- 1097. A. Haces, E. M. G. A. van Kruchten, and W. H. Okamura, Isr. J. Chem., **26**, 140 (1985).
- 1098. M. P. Cooke, Jr. and R. K. Widener, J. Am. Chem. Soc., **109**, 931 (1987).
- 1099. G. M. P. Giblin and N. S. Simpkins, J. Chem. Soc., Chem. Commun., **1987**, 207.
- 1100. J. E. Audia and J. A. Marshall, Synth. Commun., **13**, 531 (1983).
- 1101. D. Seyferth and R. C. Hui, J. Am. Chem. Soc., 107, 4551 (1985).
- 1102. W. Engel, I. Fleming, and R. H. Smithers, J. Chem. Soc., Perkin Trans. 1, **1986**, 1637.
- 1103. M. Zervos, L. Wartski, N. Goasdove, and N. Platzer, J. Org. Chem., **51**, 1293 (1986).
- 1104. D. Seyferth and R. C. Hui, Tetrahedron Lett., 27, 1743 (1986).
- 1105. J. Leonard and G. Ryan, Tetrahedron Lett., 28, 2525 (1987).
- 1106. C. Mioskowski, S. Manna, and J. R. Falck, Tetrahedron Lett., **24**, 5521 (1983).
- 1107. E. Piers and R. D. Tillyer, J. Org. Chem., 53, 5366 (1988).
- 1108. I. Fleming, N. L. Reddy, K. Takaki, and A. C. Ware, J. Chem. Soc., Chem. Commun., **1987**, 1472.
- 1109. I. Fleming and D. Waterson, J. Chem. Soc., Perkin Trans. 1, 1984, 1809.
- 1110. H. Hashimoto, N. Kawauchi, and J. Yoshimura, Chem. Lett., 1985, 965.
- 1111. R. J. Linderman and M. S. Lonikar, J. Org. Chem., 53, 6013 (1988).

- 1112. R. J. Linderman and J. R. McKenzie, Tetrahedron Lett., 29, 3911 (1988).
- 1113. W. Bernhard and I. Fleming, J. Organomet. Chem., **271**, 281 (1984); W. Bernhard, I. Fleming, and D. Waterson, J. Chem. Soc., Chem. Commun., **1984**, 28.
- 1114. T. Takahaski, M. Nisar, K. Shimizu, and J. Tsuji, Tetrahedron Lett., **27**, 5103 (1986).
- 1115. M. Gardette, A. Alexakis, and J. F. Normant, J. Chem. Ecol., **9**, 225 (1983).
- 1116. W. Amberg and D. Seebach, Angew. Chem., Int. Ed. Engl., **27**, 1718 (1988).
- 1117. R. J. Linderman and M. S. Lonikar, Tetrahedron Lett., 28, 5271 (1987).
- 1118. L. Coppi, A. Ricci, and M. Taddei, Tetrahedron Lett., 28, 965 (1987).
- 1119. D. E. Lewis and H. L. Rigley, Tetrahedron Lett., 26, 3437 (1985).
- 1120. I. Fleming, J. H. M. Hill, D. Parker, and D. Waterson, J. Chem. Soc., Chem. Commun., **1985**, 318; I. Fleming and J. J. Lewis, *ibid.*, **1985**, 149.
- 1121. See reference 1116.
- 1122. B. H. Lipshutz, Tetrahedron Lett., 24, 127 (1983).
- 1123. D. J. Kempf, J. Org. Chem., 51, 3921 (1986).
- 1124. S. Hashimoto, M. Sonegawa, S. Sakata, and S. Ikegami, J. Chem. Soc., Chem. Commun., **1987**, 24.
- 1125. C. C. Shen and C. Ainsworth, Tetrahedron Lett., 1979, 83.
- 1126. K.-H. Chu and K. K. Wang, J. Org. Chem., **51**, 767 (1986).
- 1127. S. Hara, Y. Satoh, and A. Suzuki, Chem. Lett., 1982, 1289.
- 1128. S. Sharma and A. C. Oehlschlager, Tetrahedron Lett., 29, 261 (1988).
- 1129. T. Kitazume and N. Ishikawa, Chem. Lett., 1982, 1453.
- 1130. C. E. Tonn, J. M. Palazon, C. Ruiz-Perez, M. L. Rodriguez, and V. S. Martin, Tetrahedron Lett., **29**, 3149 (1988).
- 1131. F. E. Ziegler and K. Mikami, Tetrahedron Lett., 25, 131 (1984); K.
  Uchida, K. Utimoto, and H. Nozaki, Tetrahedron, 33, 2987 (1977); *idem*,
  J. Org. Chem., 41, 2941 (1976).
- 1132. M. Joucla and M. E. Goumzili, Tetrahedron Lett., 27, 1681 (1986).
- 1133. J. P. Marino and J. C. Jaen, Tetrahedron Lett., 24, 441 (1983).
- 1134. S.-K. Choi and Y.-T. Jeong, J. Chem. Soc., Chem. Commun., **1988**, 1478.
- 1135. H. C. Brown and G. A. Molander, J. Org. Chem., 46, 645 (1981).
- 1136. D. L. Comins and A. H. Abdullah, J. Org. Chem., 49, 3392 (1984).
- 1137. Y. Kobayashi, N. Kato, T. Shimazaki, and F. Sato, Tetrahedron Lett., **29**, 6297 (1988).
- 1138. T. Fujisawa, T. Mori, S. Tsuge, and T. Sato, Tetrahedron Lett., 24, 1543

(1983).

- 1139. C. Gallina, Tetrahedron Lett., 23, 3093 (1982).
- 1140. K. Sekiya and E. Nakamura, Tetrahedron Lett., 29, 5155 (1988).
- 1141. M. Ishikura and M. Terashima, Heterocycles, 27, 2619 (1988).
- 1142. S. L. Schreiber and J. Reagan, Tetrahedron Lett., 27, 2945 (1986).
- 1143. J. Kang, J. H. Lee, K. S. Kim, J. U. Jeong, and C. Pyun, Tetrahedron Lett., **28**, 3261 (1987).
- 1144. M. Yoshifuji, M. J. Loots, and J. Schwartz, Tetrahedron Lett., **1977**, 1303.
- 1145. T. Calogeropoulou, G. B. Hammond, and D. F. Wiemer, J. Org. Chem., **52**, 4185 (1987).
- 1146. S. C. Berk, P. Knochel, and M. C. P. Yeh, J. Org. Chem., **53**, 5789 (1988).
- 1147. T. Tsuda, T. Fuji, K. Kawasaki, and T. Saegusa, J. Chem. Soc., Chem. Commun., **1980**, 1013.
- 1148. M. C. P. Yeh, P. Knochel, W. M. Butler, and S. C. Berk, Tetrahedron Lett., **29**, 6693 (1988).
- 1149. T. Tsuda, T. Yoshida, T. Kawamoto, and T. Saegusa, J. Org. Chem., **52**, 1624 (1987).
- 1150. R. K. Hill and L. A. Renbaum, Tetrahedron, 38, 1959 (1982).
- 1151. L. E. Overman and K. L. Bell, J. Am. Chem. Soc., **103**, 1851 (1981); L.
  E. Overman, K. L. Bell, and F. Ito, *ibid.*, **106**, 4192 (1984).
- 1152. J. Bosch, M. Rubiralta, A. Domingo, J. Bolos, A. Linares, C. Minguillion, M. Amat, and J. Bonjoch, J. Org. Chem., **50**, 1516 (1985).
- 1153. J. D. Brown, M. A. Foley, and D. L. Comins, J. Am. Chem. Soc., **110**, 7445 (1988).
- 1154. D. L. Comins and J. D. Brown, Tetrahedron Lett., 27, 4549 (1986).
- 1155. J. Bonjoch, N. Casamitjana, and J. Bosch, Tetrahedron, **44**, 1735 (1988).
- 1156. S. Arseniyadis and J. Sartoretti, Tetrahedron Lett., 26, 729 (1985).
- 1157. T. R. Kelly and H.-T. Liu, J. Am. Chem. Soc., **107**, 4998 (1985).
- 1158. (a) D. L. Leland, J. O. Polazzi, and M. P. Kotick, J. Org. Chem., 46, 4012 (1981); (b) *idem, ibid.*, 45, 4026 (1980); (c) J. O. Polazzi, R. N. Schut, M. P. Kotick, J. F. Howes, P. F. Osgood, R. K. Razdan, and J. E. Villarreal, J. Med. Chem., 23, 174 (1980); (d) M. P. Kotick, D. L. Leland, J. O. Polazzi, and R. N. Schut, *ibid.*, 23, 166 (1980).
- 1159. T. Suzuki, E. Sato, K. Goto, U. Katsuo, and T. Kametani, Heterocycles, **14**, 433 (1980).
- 1160. C. Clarke, I. Fleming, J. M. D. Fortunak, P. T. Gallagher, M. C. Honan, A. Mann, C. O. Nubling, P. R. Raithley, and J. J. Wolff, Tetrahedron, **44**,

3931 (1988).

- 1161. G. E. Keck and D. G. Nickell, J. Am. Chem. Soc., 102, 3632 (1980).
- 1162. J. Cooper, D. W. Knight, and P. T. Gallagher, J. Chem. Soc., Chem. Commun., **1987**, 1220.
- 1163. A. L. Smith, S. F. Williams, and A. B. Holmes, J. Am. Chem. Soc., **110**, 8696 (1988).
- 1164. D. J. Hart and Y.-M. Tsai, J. Am. Chem. Soc., 106, 8209 (1984).
- 1165. E. Kleinman and C. H. Heathcock, Tetrahedron Lett., 1979, 4125.
- 1166. W. Oppolzer, T. Begley, and A. Ashcroft, Tetrahedron Lett., **25**, 825 (1984).
- 1167. E. Piers and A. V. Gavai, Tetrahedron Lett., 27, 313 (1986).
- 1168. S. P. Tanis, Y.-H. Chuang, and D. B. Head, J. Org. Chem., **53**, 4929 (1988).
- 1169. W. C. Still and D. Mobilio, J. Org. Chem., 48, 4785 (1983).
- 1170. M. A. Tius and A. Fang, J. Am. Chem. Soc., **108**, 6389 (1986).
- 1171. S. K. Paknikar and A. E. Greene, J. Nat. Prod., **51**, 326 (1988).
- 1172. J. D. White, G. N. Reddy, and G. O. Spessard, J. Am. Chem. Soc., **110**, 1624 (1988).
- 1173. T. Murae, M. Sasaki, T. Konosu, H. Matsuo, and T. Takahashi, Tetrahedron Lett., **27**, 3411 (1986).
- 1174. K. E. Stevens and L. A. Paquette, Tetrahedron Lett., 22, 4393 (1981).
- 1175. D. P. Curran and M. H. Chen, Tetrahedron Lett., 26, 4991 (1985).
- 1176. H. Kleijn, H. Westmijze, J. Meijer, and P. Vermeer, Rec. Trav. Chim. Pays-Bas, **100**, 249 (1981).
- 1177. (a) J. A. Marshall and B. S. DeHoff, J. Org. Chem., **51**, 863 (1986); (b) J. A. Marshall and D. G. Cleary, J. Org. Chem., **51**, 858 (1986).
- 1178. J. A. Marshall, B. S. DeHoff, and S. L. Crooks, Tetrahedron Lett., **28**, 527 (1987).
- 1179. J. L. Gras, J. Org. Chem., 46, 3738 (1981).
- 1180. S. Hashimoto, M. Sonegawa, S. Sakata, and S. Ikegami, J. Chem. Soc., Chem. Commun., **1987**, 24.
- 1181. W. J. E. Parr, J. Chem. Res. (S), **1981**, 354.
- 1182. M. C. Welch and T. A. Bryson, Tetrahedron Lett., 29, 521 (1988).
- 1183. K. Tanaka, F. Uchiyama, K. Sakamoto, and Y. Inubushi, J. Am. Chem. Soc., **104**, 4965 (1982).
- 1184. M. Koreeda and S. G. Mislankar, J. Am. Chem. Soc., 105, 7203 (1983).
- 1185. G. Mehta and K. S. Rao, J. Chem. Soc., Chem. Commun., 1987, 1578.
- 1186. M. Asaoka, K. Shima, and H. Takei, Tetrahedron Lett., 28, 5669 (1987).
- 1187. S. Araki and Y. Butsugan, Chem. Lett., **1982**, 177.

- 1188. K. Takeda, K. Tsuboyama, K. Torri, M. Murata, and H. Ogura, Tetrahedron Lett., **29**, 4105 (1988).
- 1189. S. Danishefsky, S. Chackalamannil, P. Harrison, M. Silverstri, and P. Cole, J. Am. Chem. Soc., **107**, 2474 (1985).
- 1190. J. A. Marshall, T. M. Jenson, and B. S. Deltoff, J. Org. Chem., **52**, 3860 (1987).
- 1191. A. E. Greene, J. Am. Chem. Soc., **102**, 5337 (1980).
- 1192. F. Sato, H. Watanabe, Y. Tanaka, T. Yamaji, and M. Sato, Tetrahedron Lett., **24**, 1041 (1983).
- 1193. S. Suzuki, F. Mori, T. Takigawa, K. Ibata, Y. Ninagawa, T. Nishida, M. Mizuno, and Y. Tanaka, Tetrahedron Lett., **24**, 5103 (1983).
- 1194. D. Friedrich and F. Bohlmann, Tetrahedron, 44, 1369 (1988).
- 1195. T.-L. Ho and T. W. Hall, Synth. Commun., **12**, 97 (1982).
- 1196. O. Soria and L. A. Maldonado, Synth. Commun., 12, 1093 (1982).
- 1197. A. Takeda, K. Shinhama, and S. Tsuboi, J. Org. Chem, 45, 3125 (1980).
- 1198. L. A. Paquette and Y. K. Han, J. Am. Chem. Soc., 103, 1831 (1981).
- 1199. K. Mori and M. Kato, Tetrahedron Lett., 27, 981 (1986).
- 1200. T. Mandai, K. Nishikawa, H. Yamaguchi, M. Kawada, and J. Otera, Chem. Lett., **1981**, 473.
- 1201. P. Ritterskamp, M. Demuth, and K. Schaffner, J. Org. Chem., **49**, 1155 (1984).
- 1202. L. A. Paquette and Y. K. Han, J. Am. Chem. Soc., **103**, 1835 (1981).
- 1203. T. Takahashi, K. Hori, and J. Tsuji, Chem. Lett., 1981, 1189.
- 1204. S. P. Tanis and D. B. Head, Tetrahedron Lett., 23, 5509 (1982).
- 1205. J. A. Katzenellenbogen and A. L. Crumrine, J. Am. Chem. Soc., **98**, 4925 (1976).
- 1206. M. Asaoka, K. Shima, N. Fujii, and H. Takei, Tetrahedron, **44**, 4757 (1988).
- 1207. S. Taechachoonhakit and P. Ratanakul, Chem. Lett., **1986**, 911.
- 1208. S. P. Tanis and P. M. Herrinton, J. Org. Chem., **50**, 3989 (1985).
- 1209. D. F. Taber and R. W. Korismeyer, J. Org. Chem., 43, 4925 (1978).
- 1210. M. Ihara, A. Kawaguchi, M. Chihiro, K. Fukumoto, and T. Kametani, J. Chem. Soc., Chem. Commun., **1986**, 671.
- 1211. E. Piers and J. S. M. Wai, J. Chem. Soc., Chem. Commun., 1987, 1342.
- 1212. C. R. Johnson and N. A. Meanwell, J. Am. Chem. Soc., **103**, 7667 (1981).
- 1213. M. T. Crimmins and J. A. DeLoach, J. Am. Chem. Soc., 108, 800 (1986).
- 1214. E. Piers and V. Karunaratne, J. Chem. Soc., Chem. Commun., **1984**, 959.

- 1215. M. T. Crimmins and J. A. DeLoach, J. Org. Chem., 49, 2076 (1984).
- 1216. T. Sakai, K. Morita, C. Matsumara, A. Sudo, S. Tsuboi, and A. Takeda, J. Org. Chem., **46**, 4774 (1981).
- 1217. T. Fujisawa, T. Sato, T. Kawara, and K. Ohashi, Tetrahedron Lett., **20**, 4823 (1981).
- 1218. M. Schmid, F. Gerber, and G. Hirth, Helv. Chim. Acta, 65, 684 (1982).
- 1219. W. Oppolzer and A. Nakao, Tetrahedron Lett., 27, 5471 (1986).
- 1220. A. Alexakis, M. J. Chapdelaine, G. H. Posner, and A. W. Runquist, Tetrahedron Lett., **1978**, 4205.
- 1221. B. B. Snider and W. C. Faith, J. Am. Chem. Soc., **106**, 1443 (1984).
- 1222. F. Scott and M. M. Nkwelo, Synth. Commun., 15, 1051 (1985).
- 1223. L. A. Paquette, G. D. Armis, and H. Schlostarez, J. Am. Chem. Soc., **104**, 6646 (1982).
- 1224. S. Danishefsky, K. Vaughan, R. C. Gadwood, and K. Tsuzuki, J. Am. Chem. Soc., **102**, 4262 (1980); *idem, ibid.*, **103**, 4136 (1981).
- 1225. W. K. Bornack, S. S. Bhagwat, J. Ponton, and P. Helquist, J. Am. Chem. Soc., **103**, 4647 (1981).
- 1226. M. T. Crimmins and S. W. Mascarella, J. Am. Chem. Soc., **108**, 3435 (1986).
- 1227. M. Sasaki, T. Morae, H. Matsuo, T. Konosu, N. Tanaka, K. Yagi, Y. Usuki, and T. Takahashi, Bull. Chem. Soc. Jpn., **61**, 3587 (1988).
- 1228. S.-J. Lee and T. Chou, J. Chem. Soc., Chem. Commun., **1988**, 1188.
- 1229. L. A. Paquette, R. A. Galemmo, Jr., J.-C. Caille, and R. S. Valpey, J. Org. Chem., **51**, 686 (1986).
- 1230. L. A. Paquette and A. Leone-Bay, J. Am. Chem. Soc., 105, 7352 (1983).
- 1231. M. T. Crimmins, S. W. Mascarella, and L. D. Bredon, Tetrahedron Lett., 26, 997 (1985).
- 1232. F. Kido, T. Alee, and A. Yoshikoshi, J. Chem. Soc., Chem. Commun., **1986**, 590.
- 1233. H. Hoellinger, H. N. Nguyen, J. F. Dechauchereux, and L. Pichat, J. Labelled Compd. Radiopharm., **13**, 401 (1977).
- 1234. G. Casy and R. J. K. Taylor, J. Chem. Soc., Chem. Commun., **1988**, 454.
- 1235. K. Takabe, Y. Uchiyama, K. Okisaka, T. Yamada, T. Katagiri, T. Okazaki, Y. Oketa, H. Kumobayashi, and S. Akutagawa, Tetrahedron Lett., 26, 5153 (1985).
- 1236. T. Taguchi, A. Hosoda, and Y. Kobayashi, Tetrahedron Lett., **26**, 6209 (1985).
- 1237. T. Sato, T. Kawara, A. Nishizawa, and T. Fujisawa, Tetrahedron Lett., **21**, 3377 (1980).

- 1238. T. Sato, T. Kawara, K. Sakata, and T. Fujisawa, Bull. Chem. Soc. Jpn., **54**, 505 (1981).
- 1239. P. Gosselin and F. Rouessac, Tetrahedron Lett., 24, 5515 (1983).
- 1240. P. M. Wege, R. D. Clark, and C. H. Heathcock, J. Org. Chem., **41**, 3144 (1976).
- 1241. C. H. Heathcock, B. L. Finkelstein, E. J. Jarvi, P. A. Radel, and C. R. Hadley, J. Org. Chem., **53**, 1922 (1988).
- 1242. R. Chen and D. A. Rowand, J. Am. Chem. Soc., **102**, 6609 (1980).
- 1243. F. E. Ziegler, J. M. Fang, and C. C. Tam, J. Am. Chem. Soc., **104**, 7174 (1982).
- 1244. K.-M. Chen, J. E. Semple, and M. M. Joullie, J. Org. Chem., **50**, 3997 (1985).
- 1245. A. E. Greene, F. Coelho, M.-P. Depres, and T. J. Brocksom, Tetrahedron Lett., **29**, 5661 (1988).
- 1246. F. Delay and G. Ohloff, Helv. Chim. Acta, 62, 369 (1979).
- 1247. E. Keinan and D. Eren, J. Org. Chem., 52, 3872 (1987).
- 1248. S. Takano, M. Yanase, T. Sugihara, and K. Ogasawara, J. Chem. Soc., Chem. Commun., **1988**, 1538.
- 1249. A. Yasuda, S. Tanaka, H. Yamamoto, and H. Nozaki, Bull. Chem. Soc. Jpn., **52**, 1701 (1979).
- 1250. J. A. Marshall and W. Y. Gung, Tetrahedron Lett., **29**, 3899 (1988).
- 1251. K. Mori and T. Sugai, Synthesis, 1982, 752.
- 1252. H. Kimura, S. Miyamoto, H. Shinaki, and T. Kato, Chem. Pharm. Bull., 30, 723 (1982).
- 1253. M. Yamaguchi, K. Hasebe, S. Tanaka, and T. Minami, Tetrahedron Lett., **27**, 959 (1986).
- 1254. C. M. Moorhoff and D. F. Schneider, Tetrahedron Lett., 28, 4721 (1987).
- 1255. T. Takahashi, K. Kitamura, H. Nemoto, J. Tsuji, and I. Miura, Tetrahedron Lett., **24**, 3489 (1983).
- 1256. F. W. Sum and L. Weiler, Tetrahedron, **37**, Suppl. 1, 303 (1981).
- 1257. M. Nakayama, S. Ohira, S. Takata, and K. Fukuda, Chem. Lett., **1983**, 147.
- 1258. M. R. Roberts and R. H. Schlessinger, J. Am. Chem. Soc., **103**, 724 (1981).
- 1259. L. Poppe, L. Novak, P. Kolonits, A. Bata, and C. Szantay, Tetrahedron, 44, 1477 (1988).
- 1260. E. J. Corey and J. E. Munroe, J. Am. Chem. Soc., **104**, 6129 (1982).
- 1261. T. L. Fevig, R. L. Elliott, and D. P. Curran, J. Am. Chem. Soc., **110**, 5064 (1988).

- 1262. P. A. Wender and J. C. Lechleiter, J. Am. Chem. Soc., **102**, 6340 (1980).
- 1263. A. Yasuda, S. Tanaka, H. Yamamoto, and H. Nozaki, Bull. Chem. Soc. Jpn., **52**, 1701 (1979).
- 1264. L. Novak, J. Rohaly, P. Kolonits, J. Fekete, L. Varjas, and C. Szantay, Liebigs Ann. Chem., **1982**, 1173.
- 1265. J. A. Marshall, J. Grote, and J. E. Audia, J. Am. Chem. Soc., **109**, 1186 (1987).
- 1266. A. Kreft, Tetrahedron Lett., **1977**, 1035.
- 1267. R. K. Dieter, Y. J. Lin, and J. W. Dieter, J. Org. Chem., 49, 3183 (1984).
- 1268. W. J. Scott and J. K. Stille, J. Am. Chem. Soc., 108, 3033 (1986).
- 1269. W. Oppolzer, D. Dupuis, G. Poli, T. M. Raynham, and G. Bernardinelli, Tetrahedron Lett., **29**, 5885 (1988).
- 1270. C. G. Knudsen, S. C. Carey, and W. H. Okamura, J. Am. Chem. Soc., **102**, 6355 (1980); G. A. Leyes and W. H. Okamura, *ibid.*, **104**, 6099 (1982).
- 1271. Y. Inouye, C. Fukaya, and H. Kakisawa, Bull. Chem. Soc. Jpn., **54**, 1117 (1981).
- 1272. J. M. Luteijn and H. J. W. Spronck, J. Chem. Soc., Perkin Trans. 1, **1979**, 201.
- 1273. D. Caine, A. S. Frobese, and V. C. Ukachukwu, J. Org. Chem., **48**, 740 (1983).
- 1274. T. Fex, J. Froborg, G. Magnusson, and S. Thoren, J. Org. Chem., **41**, 3518 (1976).
- 1275. G. Buchi, D. Berthet, R. Decorzant, A. Grieder, and A. Hauser, J. Org. Chem., **41**, 3209 (1976).
- 1276. B. M. Trost and T. P. Klun, J. Am. Chem. Soc., 103, 1864 (1981).
- 1277. P. Kocienski, C. Love, R. Whitley, and D. A. Roberts, Tetrahedron Lett., **29**, 2867 (1988).
- 1278. D. A. McCrae and L. Dolley, J. Org. Chem., 42, 1607 (1977).
- 1279. K. Mori and T. Fujioka, Tetrahedron Lett., 23, 5443 (1982).
- 1280. K. Mori and T. Fujioka, Tetrahedron, 40, 2711 (1984).
- 1281. R. M. Cory, D. M. T. Chan, F. R. McLaren, M. H. Rasmussen, and R. M. Renneboog, Tetrahedron Lett., **1979**, 4133.
- 1282. F. E. Ziegler, G. R. Reid, W. L. Studt, and P. A. Wender, J. Org. Chem., 42, 1991 (1977).
- 1283. D. V. Pralt and P. B. Hopkins, Tetrahedron Lett., 28, 3065 (1987).
- 1284. R. Baudouy, P. Crabbe, A. E. Greene, C. LeDrian, and A. F. Orr, Tetrahedron Lett., **1977**, 2973.
- 1285. A. E. Greene, C. LeDrian, and P. Crabbe, J. Am. Chem. Soc., **102**, 7583 (1980).

- 1286. A. B. Smith and P. J. Jerris, Synth. Commun., 8, 421 (1978).
- 1287. G. Mehta, N. A. Murthy, S. D. Reddy, and A. V. Reddy, J. Am. Chem. Soc., **108**, 3443 (1986).
- 1288. M. Shibasaki, T. Mase, and S. Ikegami, J. Am. Chem. Soc., **108**, 2090 (1986).
- 1289. M. Iyoda, T. Kushida, S. Kitami, and M. Oda, J. Chem. Soc., Chem. Commun., **1987**, 1607.
- 1290. J. A. Marshall, E. D. Robinson, and R. D. Adams, Tetrahedron Lett., **29**, 4913 (1988).
- 1291. J. A. Marshall, S. L. Crooks, and B. S. DeHoff, J. Org. Chem., **53**, 1616 (1988).
- 1292. D. M. Lawlor and N. S. Simpkins, Tetrahedron Lett., 29, 1207 (1988).
- 1293. T. Tokoroyama, K. Fujimori, T. Shimizu, Y. Yamagiwa, M. Monden, and H. lio, Tetrahedron, **44**, 6607 (1988).
- 1294. R. L. Funk, P. M. Novak, and M. M. Abelman, Tetrahedron Lett., **29**, 1493 (1988).
- 1295. J. W. Huffman and P. G. Harris, J. Org. Chem., 42, 2357 (1977).
- 1296. M. F. Semmelhack, A. Yamashita, J. C. Tomesch, and K. Hirotsu, J. Am. Chem. Soc., **100**, 5565 (1978).
- 1297. H. Maruyama and T. Hiraoka, J. Org. Chem., **51**, 399 (1986).
- 1298. M. Shibasaki, K. Iseki, and S. Ikegami, Tetrahedron Lett., **21**, 3587 (1980).
- 1299. T. Kametani, M. Tsubuki, and H. Nemoto, J. Chem. Soc., Chem. Commun., **1980**, 759.
- 1300. A. E. Greene, F. Charbonnier, M.-J. Luche, and A. Moyano, J. Am. Chem. Soc., **109**, 4752 (1987).
- 1301. M. Saha, B. Bagley, and K. M. Nicholas, Tetrahedron Lett., **27**, 915 (1986).
- 1302. M. Ando, S. Sayama, and K. Takase, Chem. Lett., 1981, 377.
- 1303. A. B. Smith, B. A. Wexler, and J. Slade, Tetrahedron Lett., **23**, 1631 (1982).
- 1304. J. P. Marino and J. K. Long, J. Am. Chem. Soc., **110**, 7916 (1988).
- 1305. G. Majetich, P. A. Grieco, and M. Nishizawa, J. Org. Chem., **42**, 2327 (1977).
- 1306. T. Sato, Y. Gotoh, M. Watanabe, and T. Fujisawa, Chem. Lett., **1983**, 1533.
- 1307. B.-W. Au-Yeung and Y. Wang, J. Chem. Soc., Chem. Commun., **1985**, 825.
- 1308. J. Adams and M. Belley, Tetrahedron Lett., 27, 2075 (1986).
- 1309. T. Kawamata, K. Harimaya, and S. Inayama, Bull. Chem. Soc. Jpn., 61,

3770 (1988).

- 1310. B. S. Pitzele, J. S. Baran, and D. H. Steinman, Tetrahedron, **32**, 1347 (1976).
- 1311. D. L. Snitman, R. J. Himmelsbach, and D. S. Watt, J. Org. Chem., **43**, 4758 (1978).
- 1312. B. K. Banik, A. K. Chakraborti, and U. R. Ghatak, J. Chem. Res. (S), **1986**, 406.
- 1313. D. F. Taber and S. A. Saleh, J. Am. Chem. Soc., 102, 5085 (1980).
- 1314. B. Delpech and R. Lett, Tetrahedron Lett., 28, 4061 (1987).
- 1315. M. Tada, Y. Sugimoto, and T. Takahashi, Bull. Chem. Soc. Jpn., **53**, 2966 (1980).
- 1316. E. J. Corey, M.-C. Kang, M. C. Desai, A. K. Ghosh, and I. N. Houpis, J. Am. Chem. Soc., **110**, 649 (1988).
- 1317. L. Strekowski, S. B. Kong, and M. A. Battiste, J. Org. Chem., **53**, 901 (1988).
- 1318. T. Kametani, T. Toya, K. Ueda, M. Tsubuki, and T. Honda, J. Chem. Soc., Perkin Trans. 1, **1988**, 2433.
- 1319. E.-I. Negishi, L. D. Boardman, J. M. Tour, H. Sawada, and C. L. Rand, J. Am. Chem. Soc., **105**, 6344 (1983).
- 1320. W. Kubler, O. Petrov, E. Winterfeldt, L. Ernst, and D. Schomburg, Tetrahedron, **44**, 4371 (1988).
- 1321. S. C. Welch and S. Chayabunjonglord, J. Am. Chem. Soc., **101**, 6768 (1979).
- 1322. M. D. Taylor and A. B. Smith, Tetrahedron Lett., 24, 1867 (1983).
- 1323. Y. Shizuri, K. Suyama, and S. Yamamura, J. Chem. Soc., Chem. Commun., **1986**, 63.
- 1324. E. Piers and E. H. Ruediger, J. Chem. Soc., Chem. Commun., **1979**, 166.
- 1325. E. Piers, K. F. Cheng, and I. Nagakura, Can. J. Chem., 60, 1256 (1982).
- 1326. D. H. Hua, G. Sinai-Zingde, and S. Venkataraman, J. Am. Chem. Soc., **107**, 4088 (1985).
- 1327. P. A. Wender and G. B. Dreyer, Tetrahedron, **37**, 4445 (1981).
- 1328. G. H. Posner and C. M. Lentz, Tetrahedron Lett., 1977, 3215.
- 1329. M. T. Crimmins and L. D. Gould, J. Am. Chem. Soc., **109**, 6199 (1987).
- 1330. M. Bertrand, G. Gil, and J. Viala, Tetrahedron Lett., 1977, 1785.
- 1331. M. Miyashita, T. Kumazawa, and A. Yoshikoshi, J. Org. Chem., **45**, 2945 (1980).
- 1332. A. E. Greene and P. Crabbe, Tetrahedron Lett., **1976**, 4867.
- 1333. S. Bernasconi, P. Gariboldi, G. Jommi, M. Sisti, and P. Tavecchia, J.

Org. Chem., 46, 3719 (1981).

- 1334. W. A. Nugent and F. W. Hobbs, Jr., J. Org. Chem., 51, 3376 (1986).
- 1335. A. B. Smith and P. J. Jerris, J. Org. Chem., 47, 1845 (1982).
- 1336. Y. Ito and T. Saegusa, J. Org. Chem., 42, 2326 (1977).
- 1337. S. Sakane, Y. Matsumara, Y. Yamamura, Y. Ishida, K. Maruoka, and H. Yamamoto, J. Am. Chem. Soc., **105**, 672 (1983).
- 1338. H. J. Reich, S. K. Shah, P. M. Gold, and R. E. Olson, J. Am. Chem. Soc., **103**, 3112 (1981).
- 1339. Y. Hayashi, T. Matsumoto, M. Nishizawa, M. Togami, T. Hyono, N. Nishikawa, M. Uemura, and T. Sakan, J. Org. Chem., **47**, 3428 (1982).
- 1340. B. K. Banik, S. Ghosh, and U. R. Ghatak, Tetrahedron, 44, 6947 (1988).
- 1341. M. J. Knudsen and N. E. Schore, J. Org. Chem., 49, 5025 (1984).
- 1342. M. Rowley and Y. Kishi, Tetrahedron Lett., 29, 4909 (1988).
- 1343. S. J. Wratten and J. Meinwald, Tetrahedron Lett., 21, 3163 (1980).
- 1344. G. D. Annis and L. A. Paquette, J. Am. Chem. Soc., 104, 4504 (1982).
- 1345. P. A. Wender, R. M. Keenan, and H. Y. Lee, J. Am. Chem. Soc., **109**, 4390 (1987).
- 1346. (a) S. Bernasconi, M. Ferrari, P. Gariboldi, G. Jommi, M. Sisti, and R. Destro, J. Chem. Soc., Perkin Trans. 1, **1981**, 1994; (b) S. Bernasconi, P. Gariboldi, G. Jommi, S. Montanari, and M. Sisti, *ibid.*, **1981**, 2394.
- 1347. T. Uyehara, Y. Kabasawa, and T. Kato, Tetrahedron Lett., **26**, 2343 (1985).
- 1348. R. L. Funk and G. L. Bolton, J. Org. Chem., 52, 3173 (1987).
- 1349. R. C. Gadwood, R. M. Lett, and J. E. Wissinger, J. Am. Chem. Soc., **108**, 6343 (1986).
- 1350. G. Stork and V. Nair, J. Am. Chem. Soc., **101**, 1315 (1979).
- 1351. S. A. Monti and T. R. Dean, J. Org. Chem., 47, 2679 (1982).
- 1352. R. L. Funk and M. M. Abelman, J. Org. Chem., **51**, 3247 (1986).
- 1353. L. Ernst, H. Hopf, and N. Krause, J. Org. Chem., 52, 398 (1987).
- 1354. B. A. Wexler, B. H. Toder, G. Minaskanian, and A. B. Smith, J. Org. Chem., **47**, 3333 (1982).
- 1355. L. Moore, D. Gooding, and J. Wolinsky, J. Org. Chem., 48, 3750 (1983).
- 1356. Y. Takahashi, H. Hagiwara, H. Uda, and H. Kosugi, Heterocycles, **15**, 225 (1981).
- 1357. D. D. Sternbach, J. W. Hughes, D. F. Burdi, and B. A. Banks, J. Am. Chem. Soc., **107**, 2149 (1985).
- 1358. L. A. Paquette and G. D. Annis, J. Am. Chem. Soc., 105, 7358 (1983).
- 1359. C. Iwata, Y. Takemoto, M. Doi, and T. Imanishi, J. Org. Chem., **53**, 1623 (1988).

- 1360. C. F. Garbers, J. A. Steenkamp, and H. E. Visage, Tetrahedron Lett., **1975**, 3753.
- 1361. J. A. Marshall and R. E. Conrow, J. Am. Chem. Soc., 105, 5679 (1983).
- 1362. J. A. Marshall and R. E. Conrow, J. Am. Chem. Soc., 102, 4274 (1980).
- 1363. F. T. Sher and G. A. Berchtold, J. Org. Chem., 42, 2569 (1977).
- 1364. T. Sakai, K. Miyata, M. Ishikawa, and A. Takeda, Tetrahedron Lett., **26**, 4727 (1985).
- 1365. G. H. Posner, C. E. Whitten, J. J. Sterling, and D. J. Brunelle, Tetrahedron Lett., **1974**, 2591.
- 1366. G. D. Vite and T. A. Spencer, J. Org. Chem., 53, 2560 (1988).
- 1367. J. D. White, T. Matsui, and J. A. Thomas, J. Org. Chem., **46**, 3376 (1981).
- 1368. R. O. Hutchins, N. R. Natale, I. M. Taffer, and R. Zipkin, Synth. Commun., **14**, 445 (1984).
- 1369. A. K. Banerjee and W. F. Garcia, J. Chem. Soc., Perkin Trans. 1, **1982**, 1959.
- 1370. E. Piers, J. Banville, C. K. Lau, and I. Nagakura, Can. J. Chem., **60**, 2965 (1982).
- 1371. W. Oppolzer, R. Moretti, T. Godel, A. Meunier, and H. Loher, Tetrahedron Lett., **24**, 4971 (1983).
- 1372. P. Magnus and D. A. Quagliato, Organomet., **1**, 1243 (1982); *idem*, J. Org. Chem., **50**, 1621 (1985).
- 1373. D. J. Morgans, Jr. and G. D. Feigelson, J. Am. Chem. Soc., **105**, 5477 (1983).
- 1374. M. Karpf and A. S. Drieding, Tetrahedron Lett., 21, 4569 (1980).
- 1375. H. Schostarez and L. A. Paquette, J. Am. Chem. Soc., **103**, 722 (1981).
- 1376. C. H. Heathcock, C. M. Tice, and T. C. Germroth, J. Am. Chem. Soc., **104**, 6081 (1982).
- 1377. A. S. Kende, B. Roth, P. J. Sanfilippo, and T. J. Blacklock, J. Am. Chem. Soc., **104**, 5808 (1982).
- 1378. T. Cohen, M. Bhupathy, and J. R. Matz, J. Am. Chem. Soc., **105**, 520 (1983).
- 1379. E. J. Corey and R. M. Burk, Tetrahedron Lett., 28, 6413 (1987).
- 1380. G. Bozzato, J. R. Bachmann, and M. Pesaro, J. Chem. Soc., Chem. Commun., **1974**, 1005.
- 1381. F. E. Ziegler and J.-M. Fang, J. Org. Chem., 46, 825 (1981).
- 1382. J. E. McMurry and G. K. Bosch, J. Org. Chem., 52, 4885 (1987).
- 1383. A. Ichihara, R. Kimura, S. Yamada, and S. Sakamura, J. Am. Chem. Soc., **102**, 6353 (1980).

- 1384. A. G. Schultz, J. D. Godfrey, E. V. Arnold, and J. Clardy, J. Am. Chem. Soc., **101**, 1276 (1979).
- 1385. P. Callant, R. Ongena, and M. Vanderwalle, Tetrahedron, **37**, 2085 (1981).
- 1386. D. F. Taber, J. C. Amedio, Jr., and K. Raman, J. Org. Chem., **53**, 2984 (1988).
- 1387. P. A. Wender and G. B. Dreyer, J. Am. Chem. Soc., **104**, 5805 (1982).
- 1388. P. A. Wender and G. B. Dreyer, Tetrahedron Lett., 24, 4543 (1983).
- 1389. Y. Morizawa, H. Oda, K. Oshima, and H. Nozaki, Tetrahedron Lett., **25**, 1163 (1984).
- 1390. D. Liu, L. M. Stuhmiller, and T. C. McMorris, J. Chem. Soc., Perkin Trans. 1, **1988**, 2161.
- 1391. J. P. Marino and H. Abe, J. Am. Chem. Soc., **103**, 2907 (1981).
- 1392. Y. Horiguchi, E. Nakamura, and I. Kuwajima, J. Org. Chem., **51**, 4323 (1986).
- 1393. D. R. Andrews, D. H. R. Barton, R. H. Hesse, and M. M. Pechet, J. Org. Chem., **51**, 4819 (1986).
- 1394. B. B. Snider and T. C. Kirk, J. Am. Chem. Soc., 105, 2364 (1983).
- 1395. T. Ibuka, T. Taga, S. Nishii, and Y. Yamamoto, J. Chem. Soc., Chem. Commun., **1988**, 342.
- 1396. S. Tanimori, Y. Mitani, R. Honda, A. Matsuo, and M. Nakayama, Chem. Lett., **1986**, 763.
- 1397. H. Hayami, M. Sato, S. Kanemoto, Y. Morizawa, K. Oshima, and H. Nozaki, J. Am. Chem. Soc., **105**, 4491 (1983).
- 1398. C. K. Lai and M. Gut, J. Org. Chem., 52, 685 (1987).
- 1399. F. J. Sardina, A. Mourino, and L. Castedo, J. Org. Chem., **51**, 1264 (1986).
- 1400. S. Yamada, M. Shiraishi, M. Ohmori, and H. Takayama, Tetrahedron Lett., **25**, 3347 (1984).
- 1401. M. L. Hammond, A. Mourino, and W. H. Okamura, J. Am. Chem. Soc., **100**, 4907 (1978).
- 1402. P. Condran, M. L. Hammond, A. Mourino, and W. H. Okamura, J. Am. Chem. Soc., **102**, 6259 (1980).
- 1403. R. A. Gibbs and W. H. Okamura, Tetrahedron Lett., 28, 6021 (1987).
- 1404. G. A. Leyes and W. H. Okamura, J. Am. Chem. Soc., 104, 6099 (1982).
- 1405. R. A. S. Chandraratna and W. H. Okamura, J. Am. Chem. Soc., **104**, 6114 (1982).
- 1406. P. Yates and F. M. Winnik, Can. J. Chem., 59, 1641 (1981).
- 1407. N. R. Schmuff and B. M. Trost, J. Org. Chem., 48, 1404 (1983).

- 1408. J. L. Mascarenas, A. Mourino, and L. Castedo, J. Org. Chem., **51**, 1269 (1986).
- 1409. J. C. Jacquesy, R. Jacquesy, and C. Narbonne, Bull. Chem. Soc. Fr., **1976**, 1240.
- 1410. M. B. Groen and F. J. Zeelen, J. Org. Chem., 43, 1961 (1978).
- 1411. H. Nemoto, H. Kurobe, K. Fukumoto, and T. Kametani, Tetrahedron Lett., **25**, 4669 (1985); *idem*, J. Org. Chem., **51**, 5311 (1986).
- 1412. T. Takahashi, Y. Naito, and J. Tsuji, J. Am. Chem. Soc., **103**, 5261 (1981).
- 1413. W. Oppolzer, K. Battig, and M. Petrzilka, Helv. Chim. Acta, **61**, 1945 (1978).
- 1414. T. Takahashi, K. Shimizu, T. Doi, J. Tsuji, and Y. Fukazawa, J. Am. Chem. Soc., **110**, 2674 (1988).
- 1415. A. R. Daniewski and J. Kiegiel, J. Org. Chem., **53**, 5535 (1988); *idem, ibid.*, **53**, 5534 (1988).
- 1416. G. H. Posner and C. Switzer, J. Am. Chem. Soc., 108, 1239 (1986).
- 1417. L. I. Zakharkin and S. A. Babich, Zh. Org. Khim., 18 (11), 2261 (1982).
- 1418. S. Pikul, M. Kozlowska, and J. Jurczak, Tetrahedron Lett., **28**, 2627 (1987).
- 1419. G. Cassani, P. Massardo, and P. Piccardi, Tetrahedron Lett., **21**, 3497 (1980).
- 1420. C. Descoins, M. Lettere, G. Linstrumelle, D. Michelot, and V. Ratovelomanana, Synth. Commun., **14**, 761 (1984).
- 1421. T. Hosokawa, Y. Makabe, T. Shinahara, and S.-I. Murahashi, Chem. Lett., **1985**, 1529.
- 1422. K. Mori, S. Masuda, and T. Suguro, Tetrahedron, 37, 1329 (1981).
- 1423. R. B. Rajanbabu, W. A. Nugent, D. F. Taber, and P. J. Fagan, J. Am. Chem. Soc., **110**, 7128 (1988).
- 1424. K. Mori and M. Fujiwhara, Tetrahedron, 44, 343 (1988).
- 1425. D. Michelot, Synthesis, **1983**, 130.
- 1426. J. G. Millar and E. W. Underhill, J. Org. Chem., **51**, 4726 (1986).
- 1427. N. V. Bac and Y. Langlois, J. Am. Chem. Soc., 104, 7666 (1982).
- 1428. L. Blanco, N. Slougni, G. Rosseau, and J. M. Conia, Tetrahedron Lett., 22, 645 (1981).
- 1429. H. Kleijn, H. Westmijze, K. Kruithof, and P. Vermeer, Rec. Trav. Chim. Pays-Bas, **98**, 27 (1979).
- 1430. V. N. Odinakov, G. A. Tolstikov, R. I. Galeyeva, and T. A. Kargapoltseva, Tetrahedron Lett., **23**, 1371 (1982).
- 1431. H. Kosugi, H. Konta, and H. Uda, J. Chem. Soc., Chem. Commun., **1985**, 211.

- 1432. R. Baker and P. M. Winton, Tetrahedron Lett., 21, 1175 (1980).
- 1433. T. Itoh, Y. Yonekawa, T. Sato, and T. Fujisawa, Tetrahedron Lett., **27**, 5405 (1986).
- 1434. A. A. Kandil and K. N. Slessor, Can. J. Chem., 61, 1166 (1983).
- 1435. J. Villerias, M. Rambaud, and M. Graff, Synth. Commun., **15**, 569 (1985).
- 1436. C. Fuganti, P. Grasselli, S. Servi, and H.-E. Hogberg, J. Chem. Soc., Perkin Trans. 1, **1988**, 3061.
- 1437. M. Alderdice, C. Spino, and L. Weiler, Tetrahedron Lett., **25**, 1643 (1984).
- 1438. R. Rossi, A. Carpita, and M. Chini, Tetrahedron, **41**, 627 (1985).
- 1439. S. Takano, M. Yanase, M. Takahashi, and K. Ogasawara, Chem. Lett., **1987**, 2017.
- 1440. B. D. Johnston and A. C. Oehlschlager, J. Org. Chem., 51, 760 (1986).
- 1441. K. Mori, Tetrahedron, 37, 1341 (1981).
- 1442. T. Sato, K. Naruse, and T. Fujisawa, Tetrahedron Lett., 23, 3587 (1982).
- 1443. R. Baker, M. J. O'Mahony, and C. J. Swain, J. Chem. Res. (S), **1984**, 190.
- 1444. U. Ravid and R. M. Silverstein, Tetrahedron Lett., **1977**, 423.
- 1445. A. Alexakis and D. Jachiet, Tetrahedron Lett., 29, 217 (1988).
- 1446. M. Gardette, N. Jabri, A. Alexakis, and J. F. Normant, Tetrahedron, **40**, 2741 (1984).
- 1447. H. H. Meyer, Liebigs. Ann. Chem., **1977**, 732.
- 1448. B. D. Johnstone and A. C. Oelschlager, J. Org. Chem., 47, 5384 (1982).
- 1449. P. C. B. Page, C. M. Rayner, and I. O. Sutherland, J. Chem. Soc., Chem. Commun., **1988**, 356.
- 1450. G. Cahiez, A. Alexakis, and J. F. Normant, Tetrahedron Lett., **21**, 1433 (1980).
- 1451. W. H. Pirkle and C. W. Boeder, J. Org. Chem., 43, 2091 (1978).
- 1452. J. P. Vigneron, R. Meric, M. Larcheveque, A. Debal, J. Y. Lallemand, G. Kunesch, P. Zagatti, and M. Gallois, Tetrahedron, **40**, 3521 (1984).
- 1453. R. M. Ortuno, R. Merce, and J. Font, Tetrahedron, 43, 4497 (1987).
- 1454. T. J. Gould, M. Balestra, M. D. Wittman, J. A. Gary, L. T. Rossano, and J. Kallmerten, J. Org. Chem., **52**, 3889 (1987).
- 1455. G. Dressaire and Y. Langlois, Tetrahedron Lett., 21, 67 (1980).
- 1456. A. Alexakis, A. Commercon, C. Coulentianos, and J. F. Normant, Tetrahedron, **40**, 715 (1984).
- 1457. P. Coutrot and A. Ghribi, Synthesis, **1986**, 790.
- 1458. K. Mori and H. Iwasawa, Tetrahedron, **36**, 87 (1980).

- 1459. J. P. Marino and H. Abe, J. Org. Chem., 46, 5379 (1981).
- 1460. (a) M. Furber, R. J. K. Taylor, and S. C. Burford, J. Chem. Soc., Perkin Trans. 1, **1986**, 1809; (b) B. O'Connor and G. Just, J. Org. Chem., **52**, 1801 (1987).
- 1461. P. Kocienski and C. Yeates, Tetrahedron Lett., 24, 3905 (1983).
- 1462. K. Mori and S. Tamada, Tetrahedron, **35**, 1279 (1979); K. Mori, S. Tamada, and M. Matsui, Tetrahedron Lett., **1978**, 901.
- 1463. K. Mori and T. Ebata, Tetrahedron Lett., 22, 4281 (1981).
- 1464. J. R. Pougney and P. Rollin, Tetrahedron Lett., 28, 2977 (1987).
- 1465. M. Mori, T. Chuman, M. Kohno, K. Kato, M. Noguchi, H. Nomi, and K. Mori, Tetrahedron Lett., **23**, 667 (1982).
- 1466. S. C. Jain, D. E. Dussourd, W. E. Connor, T. Eisner, A. Guerroro, and J. Meinwald, J. Org. Chem., **48**, 2266 (1983).
- 1467. T. K. Chakraborty and S. Chandrasekaran, Tetrahedron Lett., **25**, 2891 (1984).
- 1468. N. C. Barua and R. R. Schmidt, Synthesis, **1986**, 891.
- 1469. J. P. Vigneron, R. Meric, and M. Dhaenens, Tetrahedron Lett., 21, 2057 (1980); G. Kunesch, P. Zagatti, J. Y. Lallemand, A. Debal, and J. P. Vigneron, *ibid.*, 22, 5271 (1981); J. P. Vigneron, R. Meric, M. Larcheveque, A. Debal, G. Kunesch, P. Zagatti, and M. Gallois, *ibid.*, 23, 5051 (1982).
- 1470. D. W. Knight and B. Ojhara, Tetrahedron Lett., 22, 5101 (1981).
- 1471. E. Plaumann, B. J. Fitzsimmons, B. M. Ritchie, and B. Fraser-Reid, J. Org. Chem., **47**, 941 (1982).
- 1472. M. Mori, T. Chuman, K. Kato, and K. Mori, Tetrahedron Lett., **23**, 4593 (1982).
- 1473. A. F. Sviridov, M. S. Ermolenko, D. V. Yashunsky, and N. K. Kochetkov, Tetrahedron Lett., **24**, 4359 (1983).
- 1474. P. Mangeney, A. Alexakis, and J. F. Normant, Tetrahedron Lett., **28**, 2363 (1987).
- 1475. M. M. Midland and N. H. Nguyen, J. Org. Chem., 46, 4107 (1981).
- 1476. M. Gardette, A. Alexakis, and J. F. Normant, J. Chem. Ecol., **9**, 219 (1983).
- 1477. J. K. Stille and J. H. Simpson, J. Am. Chem. Soc., 109, 2138 (1987).
- 1478. J. N. Labovitz, C. A. Henrick, and V. L. Corlin, Tetrahedron Lett., **1975**, 4209.
- 1479. E. J. Corey and W. Su, Tetrahedron Lett., 25, 5119 (1984).
- 1480. K. C. Nicolaou, T. Ladduwahetty, I. M. Taffer, and R. E. Zipkin, Synthesis, **1986**, 344.
- 1481. S. Manna, J. Vikala, P. Yadagiri, and J. R. Falck, Tetrahedron Lett., 27,

2679 (1986).

- 1482. R. Bloch, G. Gasparini, and C. Girard, Chem. Lett., 1988, 1927.
- 1483. P. Perrin, F. Aubert, J. P. Lellouche, and J. P. Beaucourt, Tetrahedron Lett., **27**, 6193 (1986).
- 1484. M. Rosenberger and C. Neukom, J. Am. Chem. Soc., **102**, 5425 (1980).
- 1485. J. P. Lellouche, J. Deschamps, C. Boullais, and J. P. Beaucourt, Tetrahedron Lett., **29**, 3073 (1988).
- 1486. G. Kruger, C. Harde, and F. Bohlmann, Tetrahedron Lett., **26**, 6027 (1985).
- 1487. Y. Fujimoto, J. S. Yadav, and C. J. Sih, Tetrahedron Lett., **21**, 2481 (1980).
- 1488. M. Suzuki, Y. Morita, A. Yanagisawa, B. Baker, P. J. Scheuer, and R. Noyori, J. Org. Chem., **53**, 286 (1988).
- 1489. A. V. Rama Rao and E. R. Reddy, Tetrahedron Lett., 27, 2279 (1986).
- 1490. A. G. Kelly and J. S. Roberts, J. Chem. Soc., Chem. Commun., **1980**, 228.
- 1491. C. C. Chapleo and S. M. Roberts, J. Chem. Soc., Chem. Commun., 1979, 680.
- 1492. S. W. Djuric, M. Miyano, M. Clare, and R. M. Rydzewski, Tetrahedron Lett., **28**, 299 (1987).
- 1493. P. Baret, E. Barreiro, A. E. Greene, J.-L. Luche, M.-A. Teixeira, and P. Crabbe, Tetrahedron, **35**, 2931 (1979).
- 1494. S. M. Ali, M. A. W. Finch, S. M. Roberts, and R. F. Newton, J. Chem. Soc., Chem. Commun., **1979**, 679.
- 1495. E. J. Corey, H. Park, A. Barton, and Y. Nii, Tetrahedron Lett., **21**, 4243 (1980).
- 1496. E. J. Corey and J. Kang, J. Am. Chem. Soc., **103**, 4618 (1981).
- 1497. K. Bannai, T. Tanaka, N. Okamura, A. Hazato, S. Sugiura, K. Manabe, K. Tomimori, and S. Kurozumi, Tetrahedron Lett., 27, 6353 (1986).
- 1498. T. Mase, M. Sodeaka, and M. Shibasaki, Tetrahedron Lett., **25**, 5087 (1984).
- 1499. Y. Guindon, R. Zamboni, C. K. Lau, and J. Rokach, Tetrahedron Lett.,23, 739 (1982).
- 1500. J. P. Marino and M. G. Kelly, J. Org. Chem., 46, 4389 (1981).
- 1501. M. A. W. Finch, T. V. Lee, and S. M. Roberts, J. Chem. Soc., Chem. Commun., **1979**, 677.
- 1502. G. Stork and S. Raucher, J. Am. Chem. Soc., 98, 1583 (1976).
- 1503. (a) R. F. Newton, C. C. Howard, D. P. Reynolds, A. H. Wadsworth, N. M. Crossland, and S. M. Roberts, J. Chem. Soc., Chem. Commun., 1978, 662; (b) R. F. Newton, D. P. Reynolds, N. M. Crossland, D. R. Kelly, and

S. M. Roberts, *ibid.*, **1979**, 683.

- 1504. J. P. Marino, R. Fernandez de la Pradilla, and E. Laborde, J. Org. Chem., **52**, 4898 (1987).
- 1505. G. Stork, T. Takahashi, I. Kawamoto, and T. Suzuki, J. Am. Chem. Soc., **100**, 8272 (1978).
- 1506. R. F. Newton, S. M. Roberts, B. J. Wakefield, and G. T. Woolley, J. Chem. Soc., Chem. Commun., **1981**, 922.
- 1507. K. Inoue and K. Sakai, Tetrahedron Lett., **1977**, 4063.
- 1508. E. J. Corey, S. G. Pyne, and A. I. Schafer, Tetrahedron Lett., **24**, 3291 (1983).
- 1509. M. Kishi, J. Chem. Soc., Chem. Commun., 1986, 885.
- 1510. P. D. Magnus and D. P. Becker, J. Am. Chem. Soc., **109**, 7495 (1987).
- 1511. A. J. Dixon, R. J. K. Taylor, and R. F. Newton, J. Chem. Soc., Perkin Trans. 1, **1981**, 1407.
- 1512. A. G. Pernet, H. Nakamoto, N. Ishizuka, M. Aburatani, K. Nakahashi, K. Sakamoto, and T. Takeuchi, Tetrahedron Lett., **1979**, 3933.
- 1513. S. Lane and R. J. K. Taylor, Tetrahedron Lett., 26, 2821 (1985).
- 1514. A. Takahashi and M. Shibasaki, Tetrahedron Lett., 28, 1893 (1987).
- 1515. A. J. Dixon, R. J. K. Taylor, R. F. Newton, A. H. Wadsworth, and G. Klinkert, J. Chem. Soc., Perkin Trans. 1, **1982**, 1923.
- 1516. A. Wissner, J. E. Birnbaum, and D. E. Wilson, J. Med. Chem., **23**, 715 (1980).
- 1517. B. S. Levison, D. B. Miller, and R. G. Salomon, Tetrahedron Lett., **25**, 4633 (1984).
- 1518. W. A. Hallet, A. Wissner, C. V. Grudzinskas, R. Patridge, J. E. Birnbaum, and M. J. Weiss, Prostaglandins, **13**, 409 (1977).
- 1519. P. W. Collins, A. F. Gasiecki, P. H. Jones, R. F. Bauer, G. W. Gullikson,E. M. Woods, and R. G. Bianchi, J. Med. Chem., 29, 1195 (1986).
- 1520. P. W. Collins, S. W. Kramer, A. F. Gasiecki, R. M. Weier, P. H. Jones, G. W. Gullikson, R. G. Bianchi, and R. F. Bauer, J. Med. Chem., **30**, 193 (1987); P. W. Collins, E. Z. Dajani, R. Pappo, A. F. Gasiecki, R. G. Bianchi, and E. M. Woods, *ibid.*, **26**, 786 (1983); P. W. Collins, S. W. Kramer, and G. W. Gullikson, *ibid.*, **30**, 1952 (1987).
- 1521. T. Toru, Y. Yamada, T. Ueno, E. Maekawa, and Y. Ueno, J. Am. Chem. Soc., **110**, 4815 (1988).
- 1522. A. G. Cameron, A. T. Hewson, and A. H. Wadsworth, Tetrahedron Lett., 23, 561 (1982).
- 1523. F. S. Alvarez, D. Wren, and A. Prince, J. Am. Chem. Soc., **94**, 7823 (1972).
- 1524. C. Luthy, P. Konstantin, and K. G. Untch, J. Am. Chem. Soc., 100, 6211

(1978).

- 1525. M. B. Floyd, R. E. Schaub, G. M. J. Siuta, J. S. Skotnicki, C. V. Grudzinskas, M. J. Weiss, F. Dessy, and L. Van Humbeeck, J. Med. Chem., **23**, 903 (1980).
- 1526. R. F. Newton, P. L. Pauson, and T. G. Taylor, J. Chem. Res. (S), **1980**, 277.
- 1527. K. Seizi, T. Toru, M. Kobayashi, and Y. Hashimoto, Chem. Lett., 1977, 331; T. Tanaka, N. Okamura, K. Bannai, H. Kiyoshi, A. Hazato, S. Sugiura, K. Manabe, F. Kamimoto, and S. Kurozumi, Chem. Pharm. Bull., 33, 2359 (1985).
- 1528. T. Tanaka, N. Okamura, K. Bannai, A. Hazato, S. Sugiura, K. Manabe, and S. Kurozumi, Tetrahedron Lett., **26**, 5575 (1985).
- 1529. E. J. Corey, K. Niimura, Y. Konishi, S. Hashimoto, and Y. Hamada, Tetrahedron Lett., **27**, 2199 (1986).
- 1530. G. Nicolau, D. B. Cosulich, A. Tonelli, S. M. Chen, M. S. Pruzinsky, and D. Blum, Prostaglandins, **31**, 811 (1986).
- 1531. F.-T. Luo and E.-I. Negishi, J. Org. Chem., 50, 4762 (1985).
- 1532. F. A. J. Kerdescky, J. H. Holms, S. P. Schmidt, R. D. Dyer, and G. W. Carter, Tetrahedron Lett., **26**, 2143 (1985).
- 1533. G. Stork and M. Isobe, J. Am. Chem. Soc., 97, 6260 (1975).
- 1534. G. Stork and M. Isobe, J. Am. Chem. Soc., 97, 4745 (1975).
- 1535. D. R. Morton and J. L. Thompson, J. Org. Chem., 43, 2102 (1978).
- 1536. P. A. Aristoff, A. W. Harrison, and A. M. Huber, Tetrahedron Lett., **25**, 3955 (1984).
- 1537. R. Davis and K. G. Untch, J. Org. Chem., 44, 3755 (1979).
- 1538. S. Ohuchida, S. Hashimoto, H. Wakatsuka, Y. Arai, and M. Hayashi, Adv. Prostaglandin Thromboxane Res., **6**, 337 (1980).
- 1539. A. E. Greene, M. A. Teixeira, E. Barreiro, A. Cruz, and P. Crabbe, J. Org. Chem., **47**, 2553 (1982).
- 1540. R. T. Buckler and D. L. Garling, Tetrahedron Lett., 1978, 2257.
- 1541. K. C. Nicolaou and R. L. Magolda, Methods Enzymol., 86, 400 (1982); K.
  C. Nicolaou, R. L. Magolda, and D. A. Claremon, Adv. Prostaglandin Thromboxane Res., 6, 481 (1980).
- 1542. A. J. Dixon, R. J. K. Taylor, R. F. Newton, and A. Wadsworth, Tetrahedron Lett., **23**, 327 (1982).
- 1543. S. M. L. Chen, R. E. Schaub, and C. V. Grudzinskas, J. Org. Chem., **43**, 3450 (1978).
- 1544. S. M. L. Chen and C. V. Grudzinskas, J. Org. Chem., 45, 2278 (1980).
- 1545. T. Toru, S. Koruzumi, T. Tanaka, S. Miura, M. Kobayashi, and S. Ishimoto, Tetrahedron Lett., **1976**, 4087; *idem, ibid.*, **1976**, 4091.

- 1546. H. C. Arndt, W. G. Biddlecom, G. P. Peruzzotti, and W. D. Woessner, Prostaglandins, **11**, 569 (1976).
- 1547. W. Bornatsch and K. G. Untch, Prostaglandins, 14, 617 (1977).
- 1548. K. Bannai, T. Toru, A. Hazato, T. Oba, T. Tanaka, N. Okamura, K. Watanabe, and S. Kurozumi, Chem. Pharm. Bull., **30**, 1102 (1982).
- 1549. J. S. Skotnicki, R. E. Schaub, M. J. Weiss, and F. Dessy, J. Med. Chem., **20**, 1662 (1977).
- 1550. B. M. Trost, J. M. Timko, and J. L. Stanton, J. Chem. Soc., Chem. Commun., **1978**, 436.
- 1551. D. K. Hutchinson and P. L. Fuchs, J. Am. Chem. Soc., **109**, 4755 (1987).
- 1552. E. J. Corey and J. Kang, Tetrahedron Lett., 23, 1651 (1982).
- 1553. J. Rokach, J. Adams, and R. Perry, Tetrahedron Lett., 23, 5185 (1982).
- 1554. M. Suzuki, A. Yanagisawa, and R. Noyori, Tetrahedron Lett., **25**, 1383 (1984); *idem, ibid.*, **24**, 1187 (1983); M. Suzuki, T. Kawagishi, T. Sukuzi and R. Noyori, *ibid.*, **23**, 4057 (1982); M. Suzuki, T. Kawagishi, and R. Noyori, *ibid.*, **23**, 5563 (1982).
- 1555. M. Suzuki, T. Kawagishi, A. Yanagisawa, T. Suzuki, N. Okamura, and R. Noyori, Bull. Chem. Soc. Jpn., **61**, 1299 (1988).
- 1556. M. Kolb, L. van Hijfte, and R. E. Ireland, Tetrahedron Lett., **29**, 6769 (1988).
- 1557. T. Tanaka, T. Toru, N. Okamura, A. Hazato, S. Sugiura, K. Manabe, S. Kurozumi, M. Suzuki, T. Kawagishi, and R. Noyori, Tetrahedron Lett., 24, 4103 (1983).
- 1558. C. R. Johnson and T. D. Penning, J. Am. Chem. Soc., **108**, 5655 (1986).
- 1559. M. Suzuki, S. Sugiura, and R. Noyori, Tetrahedron Lett., **23**, 4817 (1982).
- 1560. S. Lane, S. J. Quick, and R. J. K. Taylor, J. Chem. Soc., Perkin Trans. 1, **1985**, 893.
- 1561. R. F. Newton, D. P. Reynolds, J. Davies, P. B. Kay, S. M. Roberts, and T. W. Wallace, J. Chem. Soc., Perkin Trans. 1, **1983**, 683; C. B. Chapleo, M. A. W. Finch, T. V. Lee, S. M. Roberts, and R. F. Newton, *ibid.*, **1980**, 2084.
- 1562. J. Davies, S. M. Roberts, D. P. Reynolds, and R. F. Newton, J. Chem. Soc. Perkin Trans. 1, **1981**, 1317; R. J. Cave, R. F. Newton, D. P. Reynolds, and S. M. Roberts, *ibid.*, **1981**, 646.
- 1563. R. C. Larock, D. R. Leach, and S. M. Bjorge, Tetrahedron Lett., **23**, 715 (1982).
- 1564. L. Colombo, C. Gennari, M. Santandrea, E. Narisano, and C. Scholastico, J. Chem. Soc., Perkin Trans. 1, **1980**, 136.
- 1565. G. J. McGarvey, J. M. Williams, R. H. Hiner, Y. Matsubara, and T. Oh, J.

Am. Chem. Soc., 108, 4943 (1986).

- 1566. M. G. Nair, J. Org. Chem., **50**, 1879 (1985).
- 1567. H. Uchiyama, Y. Kobayashi, and F. Sato, Chem. Lett., **1985**, 467.
- 1568. J. S. Prasad and L. S. Liebeskind, Tetrahedron Lett., 29, 4253 (1988).
- 1569. R. E. Ireland, W. J. Thompson, G. H. Srouji, and R. Etter, J. Org. Chem., 46, 4863 (1981).
- 1570. R. B. Mitra and V. S. Joshi, Synth. Commun., 18, 2259 (1988).
- 1571. W. A. Boulanger and J. A. Katzenellenbogen, J. Med. Chem., **29**, 1483 (1986).
- 1572. P. Ravenscroft, R. F. Newton, D. I. C. Scopes, and C. Williamson, Tetrahedron Lett., **27**, 747 (1986).
- 1573. S.-O. Thorberg, L. Gawell, I. Csorgeh, and J. L. G. Nilsson, Tetrahedron, 41, 129 (1985).
- 1574. S. Hoagland, Y. Morita, D. L. Bai, H.-P. Marki, K. Kees, L. Brown, and C. H. Heathcock, J. Org. Chem., **53**, 4730 (1988).
- 1575. E. J. Corey and A. V. Gavai, Tetrahedron Lett., 29, 3201 (1988).
- 1576. M. P. Edwards, S. V. Ley, S. G. Lister, and B. D. Palmer, J. Chem. Soc., Chem. Commun., **1983**, 630.
- 1577. M. P. Edwards, S. V. Ley, S. G. Lister, B. D. Palmer, and D. J. Williams, J. Org. Chem., **49**, 3503 (1984).
- 1578. R. E. Ireland, L. Courtney, and B. J. Fitzsimmons, J. Org. Chem., **48**, 5186 (1983).
- 1579. H. Kogoshi, Y. Shizuri, H. Niwa, and K. Yamada, Tetrahedron Lett., **22**, 4729 (1981).
- 1580. S. W. Baldwin and J. M. McIver, J. Org. Chem., **52**, 320 (1987).
- 1581. Y. Guindon, C. Yoakim, M. A. Bernstein, and H. E. Morton, Tetrahedron Lett., **26**, 1185 (1985).
- 1582. M. T. Crimmins, D. M. Bankaitis-Davis, and W. G. Hollis, Jr., J. Org. Chem., **53**, 652 (1988).
- 1583. R. Amouroux, B. Gerin, and M. Chastrette, Tetrahedron Lett., **23**, 4341 (1982).
- 1584. R. Amouroux, B. Gerin, and M. Chastrette, Tetrahedron, **41**, 5321 (1985).
- 1585. H. Saimoto, T. Hiyama, and H. Nozaki, Tetrahedron Lett., **21**, 3897 (1980).
- 1586. R. L. Danheiser, S. K. Gee, and J. J. Perez, J. Am. Chem. Soc., **108**, 806 (1986).
- 1587. J. Leder, H. Fujioka, and Y. Kishi, Tetrahedron Lett., 24, 1463 (1983).
- 1588. W. C. Still and I. Galynker, J. Am. Chem. Soc., **104**, 1774 (1982).

- 1589. J.-P. Lepoiltevin and C. Benezra, J. Med. Chem., 29, 287 (1986).
- 1590. P. T. W. Cheng and S. McLean, Tetrahedron Lett., 29, 3511 (1988).
- 1591. A. Ichihara, M. Miki, H. Tazaki, and S. Sakamura, Tetrahedron Lett., **28**, 1175 (1987).
- 1592. T. Fujisawa, A. Fujimara, and Y. Ukaji, Chem. Lett., **1988**, 1541.
- 1593. J. R. Pougny and P. Sinäy, Tetrahedron Lett., 1978, 3301.
- 1594. L. Cama and B. G. Christensen, Tetrahedron Lett., 21, 2013 (1980).
- 1595. D. Raederstorff, A. Y. L. Shu, J. E. Thompson, and C. Djerassi, J. Org. Chem., **52**, 2337 (1987).
- 1596. K. Tatsuta, Y. Amemiya, Y. Kanemura, and M. Kinoshita, Tetrahedron Lett., **22**, 3997 (1981).
- 1597. M. Balestra, M. D. Wittman, J. Kallmerten, Tetrahedron Lett., **29**, 6905 (1988).
- 1598. R. K. Boeckman, Jr. and S. H. Cheon, J. Am. Chem. Soc., **105**, 4112 (1983).
- 1599. K. C. Nicolaou, D. P. Papahatjis, D. A. Claremon, R. L. Magolda, and R. E. Dolle, J. Org. Chem., **50**, 1440 (1985).
- 1600. E. J. Corey, B.-C. Pan, D. H. Hua, and D. R. Deardorff, J. Am. Chem. Soc., **104**, 6816 (1982); E. J. Corey, D. H. Hua, B.-C. Pan, and S. P. Seitz, *ibid.*, **104**, 6818 (1982).
- 1601. R. E. Ireland, S. Thaisrivongs, and P. H. Dussault, J. Am. Chem. Soc., **110**, 5768 (1988).
- 1602. M. Hirama, T. Nakamine, and S. Ito, Tetrahedron Lett., 29, 1197 (1988).
- 1603. K. M. Chen and M. M. Joullie, Tetrahedron Lett., 25, 3795 (1984).
- 1604. J.-P. Gesson, J.-C. Jacquesy, and B. Renoux, Tetrahedron, **40**, 4743 (1984).
- 1605. J. M. Luteyn, H. J. W. Spronck, and C. A. Salemink, Recl. Trav. Chim. Pays-Bas, **97**, 187 (1978).
- 1606. W. Koller, A. Linkies, H. Pietsch, H. Rehling, and D. Reuschling, Tetrahedron Lett., **23**, 1545 (1982).
- 1607. D. Tanner and P. Somfai, Tetrahedron, 44, 619 (1988).
- 1608. U. Schmidt, A. Lieberknecht, H. Griessner, R. Utz, T. Beuttler, and F. Bartkowiak, Synthesis, **1986**, 361.
- 1609. R. E. Ireland and M. D. Varney, J. Org. Chem., **51**, 635 (1986).
- 1610. F. M. Hauser and D. Mal, J. Am. Chem. Soc., **106**, 1862 (1984).
- 1611. H. Saimoto and T. Hiyama, Tetrahedron Lett., **27**, 597 (1986); H. Saimoto, Y. Kusano, and T. Hiyama, *ibid.*, **27**, 1607 (1986).
- 1612. L. Banfi, W. Carbi, G. Poli, D. Potenza, and C. Scholastico, J. Org. Chem., **52**, 5452 (1987).

- 1613. P. A. Grieco, R. E. Zelle, R. Lis, and J. Finn, J. Am. Chem. Soc., **105**, 1403 (1983); *idem, ibid.*, **108**, 5908 (1986).
- 1614. R. D. Tung and D. H. Rich, Tetrahedron Lett., 28, 1139 (1987).
- 1615. S. Masamune, M. Hirama, S. Mori, S. A. Ali, and D. S. Garvey, J. Am. Chem. Soc., **103**, 1568 (1981).
- 1616. Y. F. Shealy, C. A. O'Dell, G. Arnett, and W. M. Shannon, J. Med. Chem., **29**, 79 (1986).
- 1617. H. A. Bates and S. R. Rosenblum, J. Org. Chem., 51, 3447 (1986).
- 1618. K. S. Kim, E. Vanotti, A. Suarato, and F. Johnson, J. Am. Chem. Soc., **101**, 2483 (1979).
- 1619. R. E. Babine, Tetrahedron Lett., 27, 5791 (1986).
- 1620. I. Fleming and N. K. Terrett, Tetrahedron Lett., 25, 5103 (1984).
- 1621. N. Kurokawa and Y. Ohfune, J. Am. Chem. Soc., **108**, 6041 (1986); idem, ibid., **108**, 6043 (1986).
- 1622. T. Wakamatsu, H. Nakamura, Y. Nishikimi, K. Yoshida, T. Noda, M. Taniguchi, and Y. Ban, Tetrahedron Lett., 27, 6071 (1986); T. Wakamatsu, H. Nakamura, E. Naka, and Y. Ban, *ibid.*, 27, 3895 (1986); S. Challenger and G. Procter, *ibid.*, 27, 391 (1986).
- 1623. E. J. Corey, E. J. Trybulski, L. S. Melvin, Jr., K. C. Nicolaou, J. A. Secrist, R. Lett, P. W. Sheldrake, J. R. Falck, D. J. Brunelle, M. F. Haslanger, S. Kim, and S. Yoo, J. Am. Chem. Soc., **100**, 4618 (1978).
- 1624. J. R. Pougny, Tetrahedron Lett., **25**, 2363 (1984).
- 1625. A. Rosowky, S. H. Kim, D. Trites, and M. Wick, J. Med. Chem., **25**, 1034 (1982).
- 1626. J. L. Adams, T.-M. Chen, and B. W. Metcaff, J. Org. Chem., **50**, 2730 (1985).
- 1627. Y. Ohfune and N. Kurokawa, Tetrahedron Lett., 25, 1587 (1984).
- 1628. S. Takano, Y. Shimazaki, M. Takahashi, and K. Ogasawara, J. Chem. Soc., Chem. Commun., **1988**, 1004.
- 1629. G. Adam, R. Zibuck, and D. Seebach, J. Am. Chem. Soc., **109**, 6176 (1987).
- 1630. P. A. Grieco and C. V. Srinivasan, J. Org. Chem., 46, 2591 (1981).
- 1631. H. Akita, H. Yamada, H. Matsukura, T. Nakata, and T. Oishi, Tetrahedron Lett., **29**, 6449 (1988).
- 1632. B. J. Whitlock and H. W. Whitlock, J. Org. Chem., 45, 12 (1980).
- 1633. C. E. McDonald and R. W. Dugger, Tetrahedron Lett., 29, 2413 (1988).
- 1634. R. E. Ireland, R. C. Anderson, R. Badoud, B. J. Fitzsimmons, G. J. McGarvey, S. Thaisrivongs, and C. S. Wilcox, J. Am. Chem. Soc., 105, 1988 (1983).
- 1635. R. Baker, W. J. Cummings, J. F. Hayes, and A. Kumar, J. Chem. Soc.,

Chem. Commun., 1986, 1237.

- 1636. A. I. Meyers, K. A. Babiak, A. L. Campbell, D. L. Comins, M. P. Fleming, R. Henning, M. Heuschmann, J. P. Hudspeth, J. M. Kane, P. J. Reider, D. M. Roland, K. Shimizu, K. Tomioka, and R. D. Walkup, J. Am. Chem. Soc., **105**, 5015 (1983).
- 1637. P. T. Ho, Can. J. Chem., 58, 858 (1980).
- 1638. P. J. Kocie ‰ ski, S. D. A. Street, C. Yeates, and S. F. Cambell, J. Chem. Soc., Perkin Trans. 1, **1987**, 2189; *idem, ibid.*, **1987**, 2183; *idem, ibid.*, **1987**, 2171.
- 1639. D. V. Patel, F. Van Middlesworth, J. Donaubauer, P. Gannett, and C. J. Sih, J. Am. Chem. Soc., **108**, 4603 (1986).
- 1640. C. Kuroda, P. Theramongkol, J. R. Engebrecht, and J. D. White, J. Org. Chem., **51**, 956 (1986).
- 1641. T. Kaiho, S. Masamune, and T. Toyoda, J. Org. Chem., 47, 1612 (1982);
  S. Masamune, L. D. L. Lu, W. P. Jackson, T. Kaiho, and T. Toyoda, J. Am. Chem. Soc., 104, 5523 (1982).
- 1642. P. A. Bartlett, J. D. Meadows, and E. Ottow, J. Am. Chem. Soc., **106**, 5304 (1984).
- 1643. R. M. Williams, P. J. Sinclair, D. Zhai, and D. Chen, J. Am. Chem. Soc., **110**, 1547 (1988).
- 1644. M. Isobe, Y. Ichigawa, H. Masaki, and T. Goto, Tetrahedron Lett., **25**, 3607 (1984).
- 1645. D. R. Williams and S.-Y. Sit, J. Am. Chem. Soc., 106, 2949 (1984).
- 1646. P. R. McGuirk and D. B. Collum, J. Am. Chem. Soc., 104, 4496 (1982).
- 1647. S. D. Burke, A. D. Piscopio, and J. L. Buchanan, Tetrahedron Lett., **29**, 2757 (1988).
- 1648. H. Nagaoka and Y. Kishi, Tetrahedron, **37**, 3873 (1981).
- 1649. R. D. Wood and B. Ganem, Tetrahedron Lett., 23, 707 (1982).
- 1650. B. H. Lipshutz, H. Kotsuki, and W. Lew, Tetrahedron Lett., **27**, 4825 (1986).
- 1651. M. Honda, T. Katsuki, and M. Yamaguchi, Tetrahedron Lett., **25**, 3857 (1984).
- 1652. S. Brandange, O. Dahlman, B. Lindqvist, A. Mahlen, and L. March, Acta Chem. Scand., Ser. B, **38**, 837 (1984).
- 1653. T. Kunieda, T. Ishizuka, T. Higuchi, and M. Hirobe, J. Org. Chem., **53**, 3381 (1988).
- 1654. R. E. Ireland and M. G. Smith, J. Am. Chem. Soc., **110**, 854 (1988).
- 1655. C. G. Gordon-Gray and C. G. Whiteley, J. Chem. Soc., Perkin Trans. 1, **1977**, 2040.
- 1656. C. Iwata, M. Fujita, Y. Moritani, K. Hattori, and T. Imanishi, Tetrahedron

Lett., **28**, 3135 (1987).

- 1657. S. L. Schreiber, T. J. Sommer, and K. Ataki, Tetrahedron Lett., **26**, 17 (1985).
- 1658. P. J. Kocie ski and C. Yeates, J. Chem. Soc., Chem. Commun., **1984**, 151.
- 1659. L. Banfi, M. G. Beretta, L. Colombo, C. Gennari, and C. Scholastico, J. Chem. Soc., Chem. Commun., **1982**, 488.
- 1660. R. E. Ireland, P. G. M. Wuts, and B. Ernst, J. Am. Chem. Soc., **103**, 3205 (1981).
- 1661. S. Ikegami, T. Katsuki, and M. Yamaguchi, Tetrahedron Lett., **29**, 5285 (1988).
- 1662. A. J. Pearson and T. Ray, Tetrahedron Lett., 27, 3111 (1986).
- 1663. T. Li and Y. L. Wu, J. Am. Chem. Soc., **103**, 7007 (1981).
- 1664. R. M. Soll, L. G. Humber, D. Deininger, A. A. Asselin, T. T. Chau, and B. M. Weichman, J. Med. Chem., 29, 1457 (1986).
- 1665. D. V. Pratt and P. B. Hopkins, J. Org. Chem., **53**, 5885 (1988).
- 1666. S. Hanessian, P. C. Tyler, G. Demailly, and Y. Chapleur, J. Am. Chem. Soc., **103**, 6243 (1981).
- 1667. N. Rehnberg, T. Frejd, and G. Mabmusson, Tetrahedron Lett., **28**, 3589 (1987).
- 1668. N. Y. Wang, C. T. Hsu, and C. J. Sih, J. Am. Chem. Soc., **103**, 6538 (1981); *ibid.*, **105**, 593 (1983).
- 1669. D. J. Plata and J. Kallmerten, J. Am. Chem. Soc., **110**, 4041 (1988).
- 1670. G. Stork, I. Paterson, and F. K. C. Lee, J. Am. Chem. Soc., **104**, 4686 (1982).
- 1671. S. Hanessian, G. Rancourt, and Y. Guindon, Can. J. Chem., 56, 1843 (1978); S. Hanessian and G. Rancourt, Pure Appl. Chem., 49, 1201 (1977).
- 1672. A. B. Smith and D. H. Huryn, J. Org. Chem., 50, 1342 (1985).
- 1673. T. Nakata, G. Schmid, B. Vranesic, M. Okigawa, T. Smith-Palmer, and Y. Kishi, J. Am. Chem. Soc., **100**, 2933 (1978).
- 1674. R. E. Ireland and J. P. Daub, J. Org. Chem., 48, 1303 (1983); R. E. Ireland, J. P. Daub, G. S. Mandel, and N. S. Mandel, *ibid.*, 48, 1312 (1983).
- 1675. J. A. Schneider and K. Yoshihara, J. Org. Chem., 51, 1077 (1986).
- 1676. M. Hirama and M. Iwashita, Tetrahedron Lett., 24, 1811 (1983).
- 1677. D. M. Walba and P. D. Edwards, Tetrahedron Lett., 21, 3531 (1980).
- 1678. K. C. Nicolaou, M. R. Pavia, and S. P. Seitz, J. Am. Chem. Soc., **104**, 2027 (1982); *idem, ibid.*, **103**, 1224 (1981).
- 1679. M. Isobe, Y. Ichikawa, D. Bai, and T. Goto, Tetrahedron Lett., 26, 5203

(1985).

- 1680. W. R. Roush, M. R. Michaelides, D. F. Tai, and W. K. M. Chong, J. Am. Chem. Soc., **109**, 7575 (1987).
- 1681. U. Schollkopf, D. Pettig, E. Schulze, M. Klinge, E. Egert, B. Benecke, and M. Noltemeyer, Angew. Chem., Int. Ed. Engl., **27**, 1194 (1988).
- 1682. S. Takano, Y. Shimazaki, Y. Sekiguchi, and K. Ogasawara, Chem. Lett., **1988**, 2041.
- 1683. R. Bloch and L. Gilbert, J. Org. Chem., 52, 4603 (1987).
- 1684. M. E. Jung and G. T. Lowen, Tetrahedron Lett., 27, 5319 (1986).
- 1685. S. F. Martin and D. E. Guinn, J. Org. Chem., 52, 5588 (1987).
- 1686. W. C. Still and J. C. Barrish, J. Am. Chem. Soc., 105, 2487 (1983).
- 1687. C. Neukam, D. P. Richardson, J. M. Myerson, and P. A. Bartlett, J. Am. Chem. Soc., **108**, 5559 (1986).
- 1688. J. A. Marshall, J. E. Audia, and B. G. Shearer, J. Org. Chem., **51**, 1730 (1986).
- 1689. W. Oppolzer, R. Moretti, and G. Bernardinelli, Tetrahedron Lett., **27**, 4713 (1986).
- 1690. D. G. Batt, N. Takamura, and B. Ganem, J. Am. Chem. Soc., **106**, 3353 (1984).
- 1691. G. E. Stokker, A. W. Alberts, P. S. Anderson, E. J. Cragoe, Jr., A. A. Deana, J. L. Gilfillan, J. Hirshfield, W. J. Holtz, W. F. Hoffman, J. F. Huff, T. J. Lee, F. C. Novello, J. D. Prugh, C. S. Rooney, R. L. Smith, and A. K. Williard, J. Med. Chem., **29**, 170 (1986).
- 1692. A. P. Kozikowski and K. E. Maloney Huss, Tetrahedron Lett., **26**, 5759 (1985).
- 1693. K. S. Feldman, C. C. Mechem, and L. Nader, J. Am. Chem. Soc., **104**, 4011 (1982).
- 1694. B. M. Trost and M. G. Saulnier, Tetrahedron Lett., 26, 123 (1985).
- 1695. R. D. Singer, M. W. Hutzinger, and A. C. Oehlschlager, J. Org. Chem., 56, 4933 (1991); S. Sharma and A. C. Oehlschlager, *ibid.*, 56, 770 (1991); B. H. Lipshutz, D. C. Reuter, and E. L. Ellsworth, *ibid.*, 54, 4975 (1989); M. W. Hutzinger, R. D. Singer, and A. C. Oehlschlager, J. Am. Chem. Soc., 112, 9397 (1990); G. Zweitel and W. Leong, *ibid.*, 109, 6409 (1987); B. H. Lipshutz, E. L. Ellsworth, S. H. Dimock, and D. C. Reuter, Tetrahedron Lett., 30, 2065 (1989); B. H. Lipshutz, S. Sharma, and D. C. Reuter, *ibid.*, 31, 7253 (1990); E. Piers and M. J. Chong, Can. J. Chem., 66, 1425 (1988); For earlier work along these lines, see H. Westmijze, K. Ruitenberg, J. Meijer, and P. Vermeer, Tetrahedron Lett., 23, 2797 (1982); E. Piers and J. M. Chong, J. Chem. Soc., Chem. Commun., 1983, 934; S. D. Cox and F. Wudl, Organometallics, 2, 184 (1983); E. Piers, H. E. Morton, and M. J. Chong, Can. J. Chem., 65, 78

(1983).

.